145
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Domain formation in model lipid–cholesterol liquid-crystalline aggregation

ORCID Icon &
Pages 153-163 | Received 30 Sep 2021, Accepted 18 Sep 2022, Published online: 02 Nov 2022

References

  • Mouritsen OG. Chapter 7 in the book. Advances in the Computer Simulations of Liquid Crystals. In: Pasini P, Zannoni C, editors, Netherlands: Kluwer Academic Publishers; 2000.
  • Silvius JR. Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Act. 2003;1610:174–183.
  • Honigmann A, Pralle A. Compartmentalization of the cell membrane. J Mol Biol. 2016;428:4739–4748.
  • Kane SA, Compton M, Wilder N. Interactions determining the growth of chiral domains in phospholipid monolayers: experimental results and comparison with theory. Langmuir. 2000;16:8447–8455.
  • Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Act. 1985;822:267–287.
  • Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, et al. High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys. 2017;75:369–385.
  • Zhang J, Li Q, Wu Y, et al. Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-Positive breast cancer. Cell Commun Signaling. 2019;17:Article Id 15.
  • Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–17224.
  • Komura S, Andelman D. Physical aspects of heterogeneities in multi-component lipid membranes. Adv Colloid Interface Sci. 2014;208:34–46.
  • Flory PJ. Principles of polymer chemistry. NY: Cornell University Press; 1953.
  • Marčelja S. Molecular model for phase transition in biological membranes. Nature. 1973;241:451–453.
  • Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.
  • Vist MR, Davis JH. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–464.
  • Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997;36:10944–10953.
  • Radhakrishnan A. Phase separations in binary and ternary cholesterol–phospholipid mixtures. Biophys J. 2010;98:L41–L43.
  • Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572.
  • London E. Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. 2002;12:480–486.
  • Dietrich C, Bagatolli LA, Volovyk ZN, et al. Lipid rafts reconstituted in model membranes. Biophys J. 2001;80:1417–1428.
  • Yeagle PL. The biology of cholesterol. Boca Raton (FL): CRC Press; 1988.
  • Mouritsen OG, Jørgensen K. Micro-, nano- and meso-scale heterogeneity of lipid bilayers and its influence on macroscopic membrane properties. Mol Memb Biol. 1995;12:15–20.
  • Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membrane Biol. 1998;164:103–114.
  • Ipsen JH, Karlström G, Mouritsen OG, et al. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Et Biophys Acta. 1987;905:162–172.
  • Simons K, Vaz WLC. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33:269–295.
  • Starke-Peterkovic T, Turner N, Vitha MF, et al. Cholesterol effect on the dipole potential of lipid membranes. Biophys J. 2006;90:4060–4070.
  • S. V. Gopalakrishna CVS, Haranadh C, Murty CRK. Dipole moments of some cholesteryl compounds. Trans Faraday Soc. 1967;63:1953–1958.
  • Gawrisch K, Ruston D, Zimmerberg J, et al. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992;61:1213–1223.
  • Editorial overview, Theory of self-assembly. In: Cates ME, Safran SA, editors. Curr Opin Colloid Interface Sci; Vol. 2, 1997. p. 359–360.
  • Banerjee S, Saha J. A simulation study on multicomponent lipid bilayer. Physics A. 2006;362:423–432.
  • Nielsen M, Miao L, Ipsen JH, et al. Random-Lattice models and simulation algorithms for the phase equilibria in two-Dimensional condensed systems of particles with coupled internal and translational degrees of freedom. Phys Rev E. 1996;54:6889–6905.
  • Nielsen M, Miao L, Ipsen JH, et al. Off-Lattice model for the phase behavior of lipid-cholesterol bilayers. Phys Rev E. 1999;59:5790–5803.
  • Kang L, Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. PNAS. 2016;114:E19–E27. and references therin.
  • Saiz L, Klein ML. Computer simulation studies of model biological membranes. Acc Chem Res. 2002;35:482–489.
  • Brannigan G, Brown FLH. Solvent-Free simulations of fluid membrane bilayers. J Chem Phys. 2004;120:1059–1071.
  • Cooke IR, Deserno M. Solvent-Free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. J Chem Phys. 2005;123. Article Id 224710.
  • Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108:750–760.
  • Arnarez C, Uusitalo JJ, Masman MF, et al. Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput. 2015;11:260–275.
  • Marrink SJ, Risselada HJ, Yefimov S, et al. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–7824.
  • Marrink SJ, Corradi V, Souza PCT, et al. Computational modeling of realistic cell membranes. Chem Rev. 2019;119:6184–6226.
  • Farago O. ‘Water-Free’ computer model for fluid bilayer membranes. J Chem Phys. 2003;119:596–605.
  • Sodt AJ, Head-Gordon T. An implicit solvent coarse-grained lipid model with correct stress profile. J Chem Phys. 2010;132:Article Id 205103.
  • Allen DT, Lorenz CD. Molecular scale simulations of the self-assembly of amphiphilic molecules: current state-of-the-art and future directions. J Self-Assemb Mol Elec. 2015;3:1–38.
  • Whitehead L, Edge CM, Essex JW. Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model. J Comput Chem. 2001;22:1622–1633.
  • Ayton G, Bardenhagen SG, McMurtry P, et al. Interfacing continuum and molecular dynamics: an application to lipid bilayers. J Chem Phys. 2001;114:6913–6924.
  • Sun X, Gezelter JD. Dipolar ordering in the ripple phases of molecular-scale models of lipid membranes. J Phys Chem B. 2008;112:1968–1975.
  • Paul T, Saha J. Effect of head group orientation on phospholipid assembly. Phys Rev E. 2017;95:Article Id 062703.
  • Allen MP. Molecular simulation of liquid crystals. Mol Phys. 2019;117:2391–2417.
  • Paul T, Saha J. Computer simulation study of novel chiral liquid crystal phases. Phys Rev Res (Rapid Comm). 2019;1:032012(R).
  • Gay JG, Berne BJ. Modification of the overlap potential to mimic a linear site-site potential. J Chem Phys. 1981;74:3316–3319.
  • Luckhurst GR, Stephens RA, Phippen RW. Computer simulation studies of anisotropic systems. XIX. mesophases formed by the gay-Berne model mesogen. Liq Cryst. 1990;8:451–464.
  • Memmer R, Kuball HG, Schönhofer A. Computer simulation of chiral liquid crystal phases. I. The polymorphism of the chiral gay-Berne fluid. Liq Cryst. 1993;15:345–360.
  • Berardi R, Orlandi S, Zannoni C. Monte carlo simulations of rod-Like gay-Berne mesogens with transverse dipoles. Int Jour Mod Phys C. 1999;10:477–484.
  • Penna GL, Letardi S, Minicozzi V, et al. A simple atomistic model for the simulation of the gel phase of lipid bilayers. Euro Phys J E. 2001;5:259–274.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 1989.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. California: Academic Press; 2002.
  • Hoover WG, Ladd AJC, Moran B. High strain rate plastic flow studied via nonequilibrium molecular dynamics. Phys Rev Lett. 1982;48:1818–1820.
  • Evans DJ, Morris GP. The isothermal isobaric molecular dynamics ensemble. Phys Lett. 1983;98A:433–436.
  • Dierking I. Chiral liquid crystals: structures, phases, effects. Symmetry. 2014;6:444–472.
  • Levine YL, Bailey AI, Wilkins MHF. Multilayers of phospholipid bimolecular leaflets. Nature. 1968;220:577–578.
  • Tayebi L, Ma Y, Vashaee D, et al. Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. Nat Mat. 2012;11:1074–1080.
  • Schmitz G, Muller G. Structure and function of lamellar bodies, lipid–protein complexes involved in storage and secretion of cellular lipids. J Lip Res. 1991;32:1539–1570.
  • Dattelbaum AM, Montano GA, Roco A, et al. Myelin–mimetic lipid multilayers. NSTI Nanotech. 2008;2:480–483.
  • Pabst G, Kučerka N, Nieh MP, et al. Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lip. 2010;163:460–479.
  • Raghunathan VA, Katsaras J. Structure of the Lc′ phase in a hydrated lipid multilamellar system. Phys Rev Lett. 1995;74:4456–4460.
  • Rheinstädter MC, Ollinger C, Fragneto G, et al. Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett. 2004;93:108107–1.
  • Harroun TA, Katsaras J, Wassall SR. Cholesterol hydroxyl group is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry. 2006;25:1227–1233.
  • Harroun TA, Katsaras J, Wassall SR. Cholesterol is found to reside in the center of a polyunsaturated lipid membrane. Biochemistry. 2008;47:7090–7096.
  • Veatch SL, Polozov IV, Gawrisch K, et al. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J. 2004;86:2910–2922.
  • Gwóźdź E, Bródka A. Influence of dipole–dipole interactions on structural properties of gay-Berne particles. Acta Phys Pol A. 2000;98:645–649.
  • Li YC, Park MJ, Ye SK, et al. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol. 2006;168:1107–1118.
  • Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Canc Res. 2016;76:2063–2070.
  • Murai T. The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol. 2012;2012:763283.
  • Huang Q, Shen HM, Shui G, et al. Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway. Canc Res. 2006;66:5807–5815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.