204
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ion exchange selectivity (Mg2+, Ca2+ and K+) in hydrated Na-montmorillonite: insights from molecular dynamic simulations

& ORCID Icon
Pages 223-232 | Received 06 Jul 2022, Accepted 18 Nov 2022, Published online: 07 Dec 2022

References

  • Ito A, Wagai R. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Sci Data. 2017;4(1):170103.
  • Ding Z, Kloprogge JT, Frost RL, et al. Porous clays and pillared clays-based catalysts. part 2: A review of the catalytic and molecular sieve applications. J Porous Mater. 2001;8(4):273–293.
  • Xing YW, Xu XH, Gui XH, et al. Effect of kaolinite and montmorillonite on fine coal flotation. Fuel. 2017;195:284–289.
  • Anderson RL, Ratcliffe I, Greenwell HC, et al. Clay swelling - A challenge in the oilfield. Earth Sci Rev. 2010;98(3–4):201–216.
  • Chang F-RC, Skipper N, Sposito G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir. 1995;11(7):2734–2741.
  • Fink D, Thomas G. X-Ray studies of crystalline swelling in montmorillonites. Soil Sc Soci Am J. 1964;28(6):747–750.
  • Norrish K. Crystalline swelling of montmorillonite: manner of swelling of montmorillonite. Nature. 1954;173(4397): 256–257.
  • Norrish K. The swelling of montmorillonite. Discuss Faraday Soc. 1954;18:120–134.
  • Xu J, Camara M, Liu J, et al. Molecular dynamics study of the swelling patterns of Na/Cs-, Na/Mg-montmorillonites and hydration of interlayer cations. Mol Simul. 2017;43(8):575–589.
  • Tao L, Xiao-Feng T, Yu Z, et al. Swelling of K+, Na+ and Ca2+-montmorillonites and hydration of interlayer cations: a molecular dynamics simulation. Chin Phys B. 2010;19(10):109101.
  • Hensen EJM, Smit B. Why clays swell. J Phys Chem B. 2002;106(49):12664–12667.
  • Sun L, Tanskanen JT, Hirvi JT, et al. Molecular dynamics study of montmorillonite crystalline swelling: roles of interlayer cation species and water content. Chem Phys. 2015;455:23–31.
  • Tambach TJ, Bolhuis PG, Hensen EJ, et al. Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states. Langmuir. 2006;22(3):1223–1234.
  • Yotsuji K, Tachi Y, Sakuma H, et al. Effect of interlayer cations on montmorillonite swelling: comparison between molecular dynamic simulations and experiments. Appl Clay Sci. 2021;204:106034.
  • Jenny H. Studies on the mechanism of ionic exchange in colloidal aluminum silicates. J Phys Chem. 1932;36(8):2217–2258.
  • Jenny H. Simple kinetic theory of ionic exchange. I. ions of equal valency. J Phys Chem. 1936;40(4):501–517.
  • Evangelou VP. Environmental soil and water chemistry. New York: John Wiley, Sons; 1998.
  • Mei L, Tao H, He C, et al. Cd2+ exchange for Na+ and K+ in the interlayer of montmorillonite: experiment and molecular simulation. J Nanomater. 2015;2015.
  • Rotenberg B, Morel JP, Marry V, et al. On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochim Cosmochim Acta. 2009;73(14):4034–4044.
  • Liu C, Min F, Liu L, et al. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem Phys Lett. 2019;727:31–37.
  • Subramanian N, Lammers LN. Thermodynamics of ion exchange coupled with swelling reactions in hydrated clay minerals. J Colloid Interface Sci. 2022;608:692–701.
  • Akinwunmi B, Kporha FE, Hirvi JT, et al. Atomistic simulations of the swelling behaviour of Na-montmorillonite in mixed NaCl and CaCl2 solutions. Chem Phys. 2020;533:110712.
  • Brindley GW. Order–disorder in clay mineral structures. In: GW Brindley, G Brown, editors. Crystal structures of clay minerals and their X-Ray identification. London: Mineral Soc; 1980, P. 125.
  • Skipper NT, Chang F-RC, Sposito G., monte carlo simulation of interlayer molecular structure in swelling clay minerals. 1. methodology. Clays Clay Miner. 1995;43(3):285–293.
  • Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner. 1954;39:92–96.
  • Cygan RT, Liang JJ, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108(4):1255–1266.
  • Shahriyari R, Khosravi A, Ahmadzadeh A. Nanoscale simulation of Na-montmorillonite hydrate under basin conditions, application of CLAYFF force field in parallel GCMC. Mol Phys. 2013;111(20):3156–3167.
  • Li Q, Li X, Yang S, et al. Structure, dynamics, and stability of water molecules during interfacial interaction with clay minerals: strong dependence on surface charges. ACS Omega. 2019;4(3):5932–5936.
  • Liu B, Dai M, Ali I, et al. Molecular insights on the influence of temperature and metal ions on the hydration of kaolinite (001) surface. Mol Simul. 2021;47(12):1029–1036.
  • Teleman O, Jönsson B, Engström S. A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol Phys. 1987;60(1):193–203.
  • Whitley HD, Smith DE. Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays. J Chem Phys. 2004;120(11):5387–5395.
  • Peng JF, Yi H, Song SX, et al. Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: A molecular dynamic study. Results Phys. 2019;12:113–117.
  • Young DA, Smith DE. Simulations of clay mineral swelling and hydration: dependence upon interlayer ion size and charge. J. Phys Chem B. 2000;104(39):9163–9170.
  • Tambach TJ, Bolhuis PG, Smit B. A molecular mechanism of hysteresis in clay swelling. Angew Chem. 2004;116(20):2704–2706.
  • Shanon R. Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751–767.
  • Kosakowski G, Churakov SV, Thoenen T. Diffusion of Na and Cs in montmorillonite. Clays Clay Miner. 2008;56(2):190–206.
  • Kozaki T, Fujishima A, Saito N, et al. Effects of dry density and exchangeable cations on the diffusion process of sodium ions in compacted montmorillonite. Eng Geol. 2005;81(3):246–254.
  • Greathouse JA, Cygan RT, Fredrich JT, et al. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers. J Phys Chem C. 2016;120(3):1640–1649.
  • Talekar SV. Temperature dependence of activation energies for self-diffusion of water and of alkali ions in aqueous electrolyte solutions. A model for ion selective behavior of biological cells. Int J Quantum Chem. 1977;12(S4):459–469.
  • Loganathan N, Yazaydin AO, Bowers GM, et al. Structure, energetics, and dynamics of Cs+ and H2O in hectorite: molecular dynamics simulations with an unconstrained substrate surface. J Phys Chem C. 2016;120(19):10298–10310.
  • Malikova N, Cadène A, Marry V, et al. Diffusion of water in clays–microscopic simulation and neutron scattering. Chem Phys. 2005;317(2–3):226–235.
  • Verburg K, Baveye P. Hysteresis in the binary exchange of cations on 2: 1 clay minerals: A critical review. Clays Clay Miner. 1994;42(2):207–220.
  • Tong K, Guo J, Chen S, et al. A simulation study on the swelling and shrinking behaviors of nanosized montmorillonite based on monte carlo and molecular dynamics. Geofluids. 2021;2021:1–13.
  • Li Q, Lu X, Zhang L, et al. Molecular simulation of interlayer cation exchange of montmorillonite. J Nanjing Univ Nat Sci. 2019;55:879–887.
  • Levy R, Shainberg I. Calcium-magnesium exchange in montmorillonite and vermiculite. Clays Clay Miner. 1972;20(1):37–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.