181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing the mechanical properties of calcium silicate hydrate by engineering graphene oxide structures via molecular dynamics simulations

&
Pages 351-364 | Received 19 Aug 2022, Accepted 12 Dec 2022, Published online: 29 Dec 2022

References

  • Wang P, Qiao G, Guo Y, et al. Molecular dynamics simulation of the interfacial bonding properties between graphene oxide and calcium silicate hydrate. Constr Build Mater. 2020;260:119927.
  • Chakraborty S, Kundu SP, Roy A, et al. Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Ind Eng Chem Res. 2013;52(3):1252–1260.
  • Hou D, Ma H, Zhu Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater. 2014;67:81–94.
  • Monteiro PJ, Miller SA, Horvath A. Towards sustainable concrete. Nat Mater. 2017;16(7):698–699.
  • Li J, Zhang W, Garbev K, et al. Influences of cross-linking and Al incorporation on the intrinsic mechanical properties of tobermorite. Cem Concr Res. 2020;136:106170.
  • Miller SA, Horvath A, Monteiro PJM. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ Res Lett. 2016;11(7):074029.
  • Ali M, Liu A, Sou H, et al. Mechanical and dynamic properties of coconut fibre reinforced concrete. Constr Build Mater. 2012;30:814–825.
  • Song PS, Hwang S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater. 2004;18(9):669–673.
  • Chuah S, Pan Z, Sanjayan JG, et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater. 2014;73:113–124.
  • Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010 Sep 15;22(35):3906–3924.
  • Qiu L, Yang X, Gou X, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem Eur J. 2010 Sep 17;16(35):10653–8.
  • Hou D, Lu Z, Li X, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms. Carbon NY. 2017;115:188–208.
  • Lv S, Ma Y, Qiu C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater. 2013;49:121–127.
  • Pan Z, He L, Qiu L, et al. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem Concr Compos. 2015;58:140–147.
  • Lu Z, Hou D, Meng L, et al. Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties. RSC Adv. 2015;5(122):100598–100605.
  • Abrishami ME, Zahabi V. Reinforcing graphene oxide/cement composite with NH2 functionalizing group. Bull Mater Sci. 2016;39(4):1073–1078.
  • Al-Muhit B, Sanchez F. Nano-engineering of the mechanical properties of tobermorite 14 Å with graphene via molecular dynamics simulations. Constr Build Mater. 2020:233.
  • Pellenq RJ-M, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates. Proc Natl Acad Sci. 2009;106(38):16102–16107.
  • Dolado JS, Griebel M, Hamaekers J, et al. The nano-branched structure of cementitious calcium–silicate–hydrate gel. J Mater Chem. 2011;21(12):4445–4449.
  • Abdolhosseini Qomi M, Krakowiak K, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates. Nat Commun. 2014;5(1):1–10.
  • Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: a molecular dynamics study. Mater Chem Phys. 2014;146(3):503–511.
  • Kovačević G, Persson B, Nicoleau L, et al. Atomistic modeling of crystal structure of Ca 1.67 SiH x. Cem Concr Res. 2015;67:197–203.
  • Kunhi Mohamed A, Parker SC, Bowen P, et al. An atomistic building block description of C-S-H – Towards a realistic C-S-H model. Cem Concr Res. 2018;107:221–235.
  • Fan D, Lue L, Yang S. Molecular dynamics study of interfacial stress transfer in graphene-oxide cementitious composites. Comput Mater Sci. 2017;139:56–64.
  • Hou D, Yang T, Tang J, et al. Reactive force-field molecular dynamics study on graphene oxide reinforced cement composite: functional group de-protonation, interfacial bonding and strengthening mechanism. Phys Chem Chem Phys. 2018;20(13):8773–8789.
  • Wang P, Qiao G, Hou D, et al. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: insights from molecular dynamics simulation. Constr Build Mater. 2020;261:120500.
  • Kai M, Zhang L, Liew K. Graphene and graphene oxide in calcium silicate hydrates: chemical reactions, mechanical behavior and interfacial sliding. Carbon NY. 2019;146:181–193.
  • Fan D, Yang S, Saafi M. Molecular dynamics simulation of mechanical properties of intercalated GO/CSH nanocomposites. ComputMater Sci. 2021;186:110012.
  • Hou D, Li Z. Large-scale simulation of calcium silicate hydrate by molecular dynamics. Adv Cem Res. 2015;27(5):278–288.
  • Guo X, Xin H, Li J, et al. Molecular dynamics study on perfect and defective graphene/calcium-silicate-hydrate composites under tensile loading. Mol Simul. 2019;45(18):1481–1487.
  • Xu J, Chen X, Yang G, et al. Review of research on micromechanical properties of cement-based materials based on molecular dynamics simulation. Constr Build Mater. 2021;312:125389.
  • Izadifar M, Natzeck C, Emmerich K, et al. Unexpected chemical activity of a mineral surface: the role of crystal water in tobermorite. J Phys Chem C. 2022;126(30):12405–12412.
  • Merlino S, Bonaccorsi E, Armbruster T. The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications. Eur J Mineral. 2001;13(3):577–590.
  • Bonaccorsi E, Merlino S, Kampf AR. The crystal structure of tobermorite 14 A (plombierite), a C-S-H phase. J Am Ceram Soc. 2005;88(3):505–512.
  • Murray SJ, Subramani VJ, Selvam RP, et al. Molecular dynamics to understand the mechanical behavior of cement paste. Trans Res Rec. 2010;2142(1):75–82.
  • Cygan RT, Liang J-J, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108(4):1255–1266.
  • Hamid SA. The crystal structure of the 11A natural tobermorite. Z Kristallogr. 1981;154:189–198.
  • Allen AJ, Thomas JJ, Jennings HM. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat Mater. 2007;6(4):311–316.
  • Duque-Redondo E, Bonnaud PA, Manzano H. A comprehensive review of CSH empirical and computational models, their applications, and practical aspects. Cem Concr Res. 2022;156:106784.
  • Lerf A, He H, Forster M, et al. Structure of graphite oxide revisited. J Phys Chem B. 1998;102(23):4477–4482.
  • Liu L, Zhang J, Zhao J, et al. Mechanical properties of graphene oxides. Nanoscale. 2012;4(19):5910–5916.
  • Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B. 2006;110(45):22328–22338.
  • Hantal G, Brochard L, Laubie H, et al. Atomic-scale modelling of elastic and failure properties of clays. Mol Phys. 2014;112(9-10):1294–1305.
  • Zhang J, Pervukhina M, Clennell MB. Nanoscale elastic properties of dry and wet smectite. Clays Clay Miner. 2018;66(3):209–219.
  • Yu J, Zheng Q, Hou D, et al. Insights on the capillary transport mechanism in the sustainable cement hydrate impregnated with graphene oxide and epoxy composite. Compos B Eng. 2019;173:106907.
  • Wang P, Qiao G, Hou D, et al. Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicate hydrate: insights from molecular dynamics simulation. Constr Build Mater. 2020;261:120555.
  • Constantinides G, Ulm F-J. The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res. 2004;34(1):67–80.
  • Acker P. Swelling, shrinkage and creep: a mechanical approach to cement hydration. Mater Struct. 2004;37(4):237–243.
  • Suk JW, Piner RD, An J, et al. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010;4(11):6557–6564.
  • Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008;8(7):2045–2049.
  • Cao C, Daly M, Singh CV, et al. High strength measurement of monolayer graphene oxide. Carbon NY. 2015;81:497–504.
  • Izadifar M, Dolado JS, Thissen P, et al. Interactions between reduced graphene oxide with monomers of (calcium) silicate hydrates: a first-principles study. Nanomaterials. 2021;11(9):2248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.