161
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Genetic algorithm-de novo, molecular dynamics and MMGBSA based modelling of a novel Benz-pyrazole based anticancer ligand to functionally revert mutant P53 into wild type P53

, , , , , , & show all
Pages 678-689 | Received 11 Aug 2022, Accepted 22 Feb 2023, Published online: 09 Mar 2023

References

  • Bauer MR, Jones RN, Tareque RK, et al. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med Chem. 2019;11:2491–2504.
  • Rauf SMA, Endou A, Takaba H, et al. Effect of Y220C mutation on p53 and its rescue mechanism: a computer chemistry approach. Protein J. 2013;32:68–74.
  • Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers (Basel). 2011;3:994–1013.
  • Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene. 2000;19:1245–1256.
  • Baud MGJ, Bauer MR, Verduci L, et al. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem [Internet]. 2018;152:101–114. doi:10.1016/j.ejmech.2018.04.035.
  • Chowdhury MR, Tiwari A, Dubey GP. In silico investigation of Y220C mutant p53 for lead design. bioRxiv. 2019.
  • Bauer MR, Krämer A, Settanni G, et al. Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: the Y220X paradigm. ACS Chem Biol. 2020;15:657–668.
  • Synnott NC, Bauer MR, Madden S, et al. Mutant p53 as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigation with the anti-p53 drug, PK11007. Cancer Lett [Internet]. 2018;414:99–106. doi:10.1016/j.canlet.2017.09.053.
  • Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2014;32:209–221.
  • Rajendran V. Structural analysis of oncogenic mutation of isocitrate dehydrogenase 1. Mol Biosyst. 2016;12:2276–2287.
  • Kumar S, Bhardwaj VK, Singh R, et al. Identification of acridinedione scaffolds as potential inhibitor of DENV-2 C protein: An in silico strategy to combat dengue. J Cell Biochem. 2022;123:935–946.
  • Bhardwaj VK, Oakley A PR. Mechanistic behavior and subtle key events during DNA clamp opening and closing in T4 bacteriophage. Int J Biol Macromol [Internet]. 2022;208:11–19. doi:10.1016/j.ijbiomac.2022.03.021.
  • Singh R, Bhardwaj VK. Identification of 11β-HSD1 inhibitors through enhanced sampling methods. Chem Commun (Camb). 2022;58:5005–5008.
  • Rajendran V, Gopalakrishnan C, Sethumadhavan R. Pathological role of a point mutation (T315I) in BCR-ABL1 protein – a computational insight. J Cell Biochem. 2018;119:918–925.
  • Vijay Kumar Bhardwaj RP. A lesson for the maestro of the replication fork: targeting the protein-binding interface of proliferating cell nuclear antigen for anticancer therapy. J Cell Biochem. 2022;123:1091–1102.
  • Rajendran V, Purohit R, Sethumadhavan R. In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids. 2012;43:603–615.
  • Rajendran V, Gopalakrishnan C, Purohit R. Impact of point mutation P29S in RAC1 on tumorigenesis. Tumor Biol [Internet]. 2016;37:15293–15304. doi:10.1007/s13277-016-5329-y.
  • Hanwell MD, Curtis DE, Lonie DC. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:1–17.
  • Morris GM, Huey R, Lindstrom W, et al. Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. 2009.
  • Forli S, Huey R, Pique ME, et al. 00006565-201002000-00017. 2016;11:905–919.
  • Douguet D, Munier-Lehmann H, Labesse G, et al. LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem. 2005;48:2457–2468.
  • Douguet D. e-LEA3D: A computational-aided drug design web server. Nucleic Acids Res. 2010;38:615–621.
  • Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26:531–568.
  • Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9:3084–3095.
  • Wang J, Wolf RM, Caldwell JW, et al. 20035_Ftp. J Comput Chem. 2004;56531:1157–1174.
  • Chasov V, Mirgayazova R, Zmievskaya E, et al. Key players in the mutant p53 team: small molecules, gene editing, immunotherapy. Front Oncol. 2020;10:1–10.
  • Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ [Internet]. 2019;26:199–212. doi:10.1038/s41418-018-0246-9.
  • Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J [Internet]. 2011;101:2525–2534. doi:10.1016/j.bpj.2011.10.024.
  • Dolinsky TJ, Nielsen JE, McCammon JA, et al. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:665–667.
  • Madhavi Sastry G, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234.
  • Olsson MHM, SØndergaard CR, Rostkowski M. PROPKA3: consistent treatment of internal and surface residues in empirical p K a predictions. J Chem Theory Comput. 2011;7:525–537.
  • Lu C, Wu C, Ghoreishi D, et al. OPLS4: improving force field accuracy on challenging regimes of chemical space. J Chem Theory Comput. 2021;17:4291–4300.
  • Bowers KJ, Chow E, Xu H. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proc 2006 ACM/IEEE Conf Supercomput SC’06. New York, New York, USA: ACM Press; 2006. p. 84.
  • Halder AK, Cordeiro MNDSC. Multi-target in silico prediction of inhibitors for mitogen-activated protein kinase-interacting kinases. Biomolecules [Internet]. 2021;11:1670. DOI:10.3390/biom11111670.
  • Blandino G, Di Agostino S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J Exp Clin Cancer Res. 2018;37:1–13.
  • Sundar D, Yu Y, Katiyar SP, et al. Wild type p53 function in p53 Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence 06 biological sciences 0601 biochemistry and cell biology 11 medical and health S. J Exp Clin Cancer Res. 2019;38:1–14.
  • Campanera JM, Pouplana R. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Aß10-35) aggregation. Molecules. 2010;15:2730–2748.
  • Safarizadeh H, Garkani-Nejad Z. Molecular docking, molecular dynamics simulations and QSAR studies on some of 2-arylethenylquinoline derivatives for inhibition of Alzheimer’s amyloid-beta aggregation: insight into mechanism of interactions and parameters for design of new inhibitors. J Mol Graph Model [Internet. 2019;87:129–143. DOI:10.1016/j.jmgm.2018.11.019.
  • Halder AK, Honarparvar B. Molecular alteration in drug susceptibility against subtype B and C-SA HIV-1 proteases: MD study. Struct Chem. 2019;30:1715–1727.
  • Ghosh A, Panda P, Halder AK CM. In silico characterization of aryl benzoyl hydrazide derivatives as potential inhibitors of RdRp enzyme of H5N1 influenza virus. Front Pharmacol [Internet]. 2022. DOI:10.3389/fphar.2022.1004255
  • Srinivasan J, Miller J, Kollman PA, et al. Continuum solvent studies of the stability of rna hairpin loops and helices. J Biomol Struct Dyn. 1998;16:671–682.
  • Ylilauri M, Pentikäinen OT. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J Chem Inf Model. 2013;53:2626–2633.
  • La Spada AR. Repeat meeting’s repeat performance. Trends Genet. 1999;15:350–351.
  • Stindt MH, Muller PAJ, Ludwig RL, et al. Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene. 2015;34:4300–4310.
  • Zhang J, Sun W, Kong X, et al. Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proc Natl Acad Sci U S A. 2019;116:24259–24267.
  • Joerger AC, Bauer MR, Wilcken R, et al. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure [Internet]. 2015;23:2246–2255. doi:10.1016/j.str.2015.10.016.
  • Gomes AS, Ramos H, Gomes S, et al. SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations. Biochim Biophys Acta Gen Subj [Internet]. 2020;1864:129440. DOI:10.1016/j.bbagen.2019.129440.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.