7,970
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

RUPTURA: simulation code for breakthrough, ideal adsorption solution theory computations, and fitting of isotherm models

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 893-953 | Received 09 Jan 2023, Accepted 31 Mar 2023, Published online: 12 May 2023

References

  • de Haan A, Bosch H. Industrial separation processes; fundamentals. Berlin/Boston: De Gruyter; 2013.
  • Pullumbi P, Brandani F, Brandani S. Gas separation by adsorption: technological drivers and opportunities for improvement. Curr Opin Chem Eng. 2019;24:131–142.
  • Yu C, Huang C, Tan C. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res. 2012;12:745–769.
  • Jiuhui Q. Research progress of novel adsorption processes in water purification: a review. J Environ Sci. 2008;20:1–13.
  • Alghoul M, Sulaiman M, Azmi B, et al. Review of materials for adsorption refrigeration technology. Anti-Corros Method M. 2007;54:225–229.
  • Ruthven D. Principles of adsorption & adsorption processes. New York: John Wiley & Sons, Inc.; 1984.
  • Rodrigues AE. Simulated moving bed technology: principles, design and process applications. Kidlington: Butterworth-Heinemann; 2015.
  • Jiang N, Shen Y, Liu B, et al. CO 2 capture from dry flue gas by means of VPSA, TSA and TVSA. J CO2 Util. 2020;35:153–168.
  • Luis P. Chapter 8 -- hybrid processes based on membrane technology. In: Luis P, editor. Fundamental modelling of membrane systems. Amsterdam: Elsevier; 2018. p. 301–343.
  • Ruthven D, Farooq S, Knaebel K. Pressure swing adsorption. New York: VCH Publishers Inc.; 1994.
  • Canevesi R, Borba C, da Silva A, et al. Towards a design of a pressure swing adsorption unit for small scale biogas upgrading at. Energy Procedia. 2019;158:848–853.
  • Yavary M, Ebrahim H, Falamaki C. The effect of number of pressure equalization steps on the performance of pressure swing adsorption process. Chem Eng Process. 2015;87:35–44.
  • Grande C. Advances in pressure swing adsorption for gas separation. Int Schol Res Not. 2012;2012:982934.
  • Oschatz M, Antonietti M. A search for selectivity to enable CO 2 capture with porous adsorbents. Energy Environ Sci. 2018;11:57–70.
  • Kumar R. Pressure swing adsorption process: performance optimum and adsorbent selection. Ind Eng Chem Res. 1994;33:1600–1605.
  • Ho M, Allinson G, Wiley D. Reducing the cost of CO 2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res. 2008;47:4883–4890.
  • Bhatia S, Myers A. Optimum conditions for adsorptive storage. Langmuir. 2006;22:1688–1700.
  • Al Mohammed M, Danish M, Khan I, et al. Continuous fixed bed CO 2 adsorption: breakthrough, column efficiency, mass transfer zone. Processes. 2020;8:1233.
  • Rodrigues AE. Perspectives on adsorption. what else? a personal view. Fluid Phase Equilib. 2023;564:Article ID 113614.
  • Tien C. Introduction to adsorption: basics, analysis, and applications. Amsterdam: Elsevier; 2019.
  • Dubbeldam D, Calero S, Ellis DE, et al. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016;42(2):81–101.
  • Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of Monte Carlo codes. Mol Simul. 2013;39(14–15):1253–1292.
  • Do D. Adsorption analysis: equilbria and kinetics. London: Imperial College Press; 1998.
  • Guiochon G, Felinger A, Shirazi D. Fundamentals of preparative and nonlinear chromatography. 2nd ed. Amsterdam: Academic Press; 2006.
  • Moradi O. Thermodynamics of interfaces. book section 8. Rijeka: InTechOpen; 2011.
  • Ayawei N, Ebelegi A, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:Article ID 3039817.
  • Girish C. Various isotherm models for multicomponent adsorption: a review. Int J Res Civ Eng Technol. 2017;8:80–86.
  • Myers A, Prausnitz J. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11:121–127.
  • Swisher J, Lin L-C, Kim J, et al. Evaluating mixture adsorption models using molecular simulation. AIChE J. 2013;59:3054–3064.
  • Van Assche T, Baron G, Denayer J. An explicit multicomponent adsorption isotherm model: accounting for the size-effect for components with Langmuir adsorption behavior. Adsorption. 2018;24:517–530.
  • Sharma S, Rigutto M, Baur R, et al. Modelling of adsorbate-size dependent explicit isotherms using a segregated approach to account for surface heterogeneities. Mol Phys. In press. 2023. DOI:10.1080/00268976.2023.2183721.
  • Glueckauf E. Theory of chromatography part 10. formulae for diffusion into spheres and their application to chromatography. T Faraday Soc. 1955;51:1540–1551.
  • Shu C-W. Total-variation diminishing time discretizations. IAM J Sci Statist Comput. 1988;9:1073–1084.
  • Shu C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys. 1988;77:439–471.
  • Gottlieb S, Gottlieb L. Strong stability preserving properties of runge-kutta time discretization methods for linear constant coefficient operators. J Sci Comput. 2003;18:83–109.
  • Ketcheson D. Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J Sci Comput. 2008;30:2113–2136.
  • Landa H. Development of an efficient method for simulating fixed-bed adsorption dynamics using Ideal Adsorbed Solution Theory [PhD thesis]. Otto-von-Guericke-Universität Magdeburg. 2016. Available from: http://d-nb.info/1128726513/34.
  • Winterton R. Van der Waals forces. Contemp Phys. 1970;11:559–574.
  • Condon J. Surface area and porosity determinations by physisorption: measurements and theory. Amsterdam: Elsevier Science; 2006.
  • Dabrowski A. Adsorption -- from theory to practice. Adv Colloid Interface Sci. 2001;93:135–224.
  • Sircar S. Excess properties and thermodynamics of multicomponent gas adsorption. J Chem Soc Faraday Trans 1 F. 1985;81:1527–1540.
  • Pini R. Interpretation of net and excess adsorption isotherms in microporous adsorbents. Microporous Mesoporous Mater. 2014;187:40–52.
  • Gumma S, Talu O. Net adsorption: A thermodynamic framework for supercritical gas adsorption and storage in porous solids. Langmuir. 2010;26:17013–17023.
  • Myers A. Thermodynamics of adsorption in porous materials. AIChE J. 2002;48:145–160.
  • Bingel L, Walton K. Surprising use of the business innovation bass diffusion model to accurately describe adsorption isotherm types I, III, and V. Langmuir. 2023;39:4475–4482.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40:1361–1403.
  • Gritti F, Guiochon G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J Colloid Interface Sci. 2003;1:43–59.
  • Boedeker C. Über das verhältnis zwischen masse und wirkung beim kontakt ammoniakalscher flüssigkeiten mit ackererde und mit kohlensaurem kalk. ZA Pflanzenbau. 1859;7:48–58.
  • Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16:490–495.
  • Koble R, Corrigan T. Adsorption isotherms for pure hydrocarbons. Ind Eng Chem Res. 1952;44:383–387.
  • Redlich O, Peterson D. A useful adsorption isotherm. J Phys Chem. 1959;63:1024.
  • Toth J. State equations of the solid-gas interface layers. Acta Chim Acad Sci Hung. 1971;69:311–328.
  • Toth J. Uniform interpretation of gas/solid adsorption. Adv Colloid Interface Sci. 1995;55:1–239.
  • Toth J. Adsorption: theory, modelling, and analysis. New York: Marcel Dekker Inc; 2002.
  • O'Brien JA, Myers AL. Physical adsorption of gases on heterogeneous surfaces: series expansion of isotherms using central moments of the adsorption energy distribution. J Chem Soc Faraday Trans. 1984;80:1467–1477.
  • Hill T. An introduction to statistical thermodynamics. New York: Dover Publications; 1986.
  • Lin B, Ma Z, Golshan-Shirazi S, et al. Study of the representation of competitive isotherms and of the intersection between adsorption isotherms. J Chromatogr. 1989;475:1–11.
  • Tempkin V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR. 1940;12:327–356.
  • Simon C, Kim J, Lin L-C, et al. Optimizing nanoporous materials for gas storage. Phys Chem Chem Phys. 2014;16:5499–5513.
  • Graham D. The characterization of physical adsorption systems. J Phys Chem. 1953;57:665–669.
  • Smit B, Maesen T. Commensurate freezing of alkanes in the channels of a zeolite. Nature. 1995;374:42–44.
  • Vlugt TJH, Krishna R, Smit B. Molecular simulations of adsorption isotherms for linear and branched alkanes and their mixtures in silicalite. J Phys Chem B. 1999;103:1102–1118.
  • Tarafder A, Mazzotti M. A method for deriving explicit binary isotherms obeying the ideal adsorbed solution theory. Chem Eng Technol. 2012;35:102–108.
  • Worch E. Adsorption technology in water treatment. Berlin/Boston: Walter de Gruyter GmbH & Co; 2012.
  • Weber Jr W, DiGiano F. Process dynamics in environmental systems. New York: John Wiley & Sons; 1996.
  • Talu O, Myers A. Rigorous thermodynamic treatment of gas adsorption. AIChE J. 1988;34:1887–1893.
  • Bass F. A new product growth for model consumer durables. Manag Sci. 1969;15:215–227.
  • DeVoe H. Thermodynamics and chemistry. Hoboken: Prentice-Hall, Inc.; 2015.
  • Myers A, Monson P. Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption. 2014;20:591–622.
  • Murthi M, Snurr R. Effects of molecular siting and adsorbent heterogeneity on the ideality of adsorption equilibria. Langmuir. 2004;20:2489–2497.
  • Brandani S, Mangano E, Luberti M. Net, excess, and absolute adsorption in mixed gas adsorption. Adsorption. 2017;23:569–576.
  • Myers A. Thermodynamics of adsorption. In: Letcher T, editor. Chemical thermodynamics for industry. chapter 21. Cambridge: Royal Society of Chemistry; 2004. p. 243–253.
  • Santori G, Luberti M, Ahn H. Ideal adsorbed solution theory solved with direct search minimisation. Comput Chem Eng. 2014;71:235–240.
  • Landa H, Flockerzi D, Seidel-Morgenstern A. A method for efficiently solving the IAST equations with an application to adsorber dynamics. AIChE J. 2012;59:1263–1277.
  • Seidel A, Reschke G, Friedrich S, et al. Equilibrium adsorption of two-component organic solutes from aqueous solutions on activated carbon. Adsorption Sci Technol. 1986;3:189–199.
  • Myers A, Valenzuela D. Adsorption from bisolute systems on active carbon. J Water Pollut Control Fed. 1973;45:2463–2479.
  • Simon C, Smit B, Haranczyk M. pyIAST: ideal adsorbed solution theory (IAST) python package. Comput Phys Commun. 2016;200:364–380.
  • Voigt A. Comparison of methods for the calculation of the real dilogarithm regarding instruction-level parallelism. arXiv:2201.01678. 2022.
  • Vidunas R. Algebraic transformations of gauss hypergeometric functions. Funkcial Ekvac. 2009;52:139–180.
  • Koepf W. Gosper's algorithm. London: Springer London; 2014. p. 79–101.
  • Shade D, Bout B, Sholl D, et al. Opening the toolbox: 18 experimental techniques for measurement of mixed gas adsorption. Ind Eng Chem Res. 2022;61:2367–2391.
  • Walton K, Sholl D. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 2015;61:2757–2762.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. Orlando: Elsevier; 2001.
  • Butler J, Ockrent C. Studies in electrocapillarity. Part III. The surface tensions of solutions containing two surface-active solutes. J Phys Chem. 1930;34:2841–2859.
  • Broughton D. Adsorption isotherms for binary gas mixtures. Ind Eng Chem. 1948;40:1506–1508.
  • Jain J, Snoeyink V. Adsorption from bisolute systems on active carbon. J Water Pollut Control Fed. 1973;45:2463–2479.
  • Yang R. Adsorbents: fundamentals and applications. Hoboken: John Wiley & Sons; 2003.
  • O'Brien J, Myers A. Rapid calculations of multicomponent adsorption equilibria from pure isotherm data. Ind Eng Chem Process Des Dev. 1985;24:1188–1191.
  • Chen H, Sholl D. Examining the accuracy of ideal adsorbed solution theory without curve-fitting using transition matrix monte carlo simulations. Langmuir. 2007;23:6431–6437.
  • Cessford N, Seaton N, Düren T. Evaluation of ideal adsorbed solution theory as a tool for the design of metal–organic framework materials. Ind Eng Chem Res. 2012;51:4911–4921.
  • Krishna R, van Baten J. How reliable is the ideal adsorbed solution theory for the estimation of mixture separation selectivities in microporous crystalline adsorbents?. ACS Omega. 2021;6:15499–15513.
  • Fraux G, Boutin A, Coudert F-X. On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior. Adsorption. 2018;24:233–241.
  • Gharagheizi F, Sholl D. Comprehensive assessment of the accuracy of the ideal adsorbed solution theory for predicting binary adsorption of gas mixtures in porous materials. Ind Eng Chem Res. 2022;61:727–739.
  • Suwanayuen S, Danner RP. Vacancy solution theory of adsorption from gas mixtures. AIChE J. 1980;26:76–83.
  • Costa E, Sotelo J, Calleja G, et al. Adsorption of binary and ternary hydrocarbon-gas mixtures on activated carbon -- experimental-determination and theoretical prediction of the ternary equilibrium data. AIChE J. 1981;27:5–12.
  • Gamba G, Rota R, Storti G, et al. Vacancy solution theory of adsorption from gas mixtures. AIChE J. 1989;35:959–966.
  • Talu O, Zwiebel I. Multicomponent adsorption equilibria of nonideal mixtures. AIChE J. 1986;32:1263–1276.
  • Sakuth M, Meyer J, Gmehling J. Measurement and prediction of binary adsorption equilibria of vapors on dealuminated Y-zeolites (DAY). Chem Eng Process. 1998;37:267–277.
  • Bartholdy S, Bjorner MG, Solbraa E, et al. Measurement and prediction of binary adsorption equilibria of vapors on dealuminated Y-zeolites (DAY). Ind Eng Chem Res. 2013;52:11552–11563.
  • Ladshaw A, Yiacoumi S, Tsouris C. A generalized procedure for the prediction of multicomponent adsorption. AIChE J. 2015;61:2600–2610.
  • Smith J, van Ness H. Introduction to chemical engineering thermodynamics. 4th ed. New York: McGraw-Hill; 1987.
  • Radke CJ, Prausnitz J. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J. 1972;18:761–768.
  • Richter E, Schutz W, Myers A. Effect of adsorption equation on prediction of multicomponent adsorption equilibria by the ideal adsorbed solution theory. Chem Eng Sci. 1989;22:1609–1616.
  • Myers AL, Valenzuela D. Computer algorithm and graphical method for calculating adsorption equilibria of gas mixtures. J Chem Eng Jpn. 1986;19:392–396.
  • LeVan M, Vermeulen T. Binary langmuir and freundlich isotherms for ideal adsorbed solutions. J Phys Chem. 1981;85:3247–3250.
  • Ilic M, Flockerzi D, Seidel-Morgenstern A. A thermodynamically consistent explicit competitive adsorption isotherm model based on second-order single component behaviour. J Chromatogr A. 2010;1217:2132–2137.
  • Cardano G, Witmer T. The great art; or, the rules of algebra. translated and edited by T. Richard Witmer. Cambridge: MIT Press; 1968.
  • Van Assche T, Baron G, Denayer J. Adsorption size effects for Langmuir systems in process simulators: case study comparing explicit Langmuir-based models and FASTIAS. Ind Eng Chem Res. 2021;60:12092–12099.
  • Poursaeidesfahani A, Andres-Garcia E, de Lange M, et al. Prediction of adsorption isotherms from breakthrough curves. Microporous Mesoporous Mater. 2019;277:237–244.
  • Moon H, Tien C. Further work on multicomponent adsorption equilibria calculations based on the ideal adsorbed solution theory. Ind Eng Chem Res. 1987;26:2042–2047.
  • Yun JH, Park HC, Moon H. Multicomponent adsorption calculations based on adsorbed solution theory. Korean J Chem Eng. 1996;13:246–254.
  • Mangano E, Friedrich D, Brandani S. Robust algorithms for the solution of the ideal adsorbed solution theory equations. AIChE J. 2014;61:981–991.
  • O'Brien J, Myers A. A comprehensive technique for equilibrium calculations in adsorbed mixtures: the generalized FastIAS method. Ind Eng Chem Res. 1988;27:2085–2092.
  • Choy K, Porter J, McKay G. Single and multicomponent equilibrium studies for the adsorption of acidic dyes on carbon from effluent. Langmuir. 2004;20:9646–9656.
  • Frey D, Rodrigues A. Explicit calculation of multicomponent equilibria for ideal adsorbed solutions. AIChE J. 1994;40:182–186.
  • Santos J, Cheng Y, Dias M, et al. Surface B-splines fitting for speeding up the simulation of adsorption processes with IAS model. Comput Chem Eng. 2011;35:1186–1191.
  • Nelder J, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–313.
  • Mirzaei A, Chen Z, Haghighat F, et al. Enhanced adsorption of anionic dyes by surface fluorination of zinc oxide: A straightforward method for numerical solving of the ideal adsorbed solution theory (IAST). Chem Eng J. 2017;30:407–418.
  • Benjamin M. New conceptualization and solution approach for the ideal adsorbed solution theory (IAST). Environ Sci Technol. 2009;43:2530–2536.
  • Balestra S, Bueno-Perez R, Aguilar R, et al. GAIAST: a fortran code with genetic algorithms (GA) for an adsorbed solution theory (IAST). 2016. DOI:10.5281/zenodo.596674.
  • Lee S, Lee JH, Kim J. User-friendly graphical user interface software for ideal adsorbed solution theory calculations. Korean J Chem Eng. 2018;35:214–221.
  • Iacomi P, Llewellyn P. pyGAPS: a python-based framework for adsorption isotherm processing and material characterisation. Adsorption. 2019;25:1533–1542.
  • Dautzenberg E, Smulders M, de Smet LCPM. Graphiast: A graphical user interface software for ideal adsorption solution theory (IAST) calculations. Comput Phys Commun. 2022;280:Article ID 108494.
  • Hoseinpoori S. Steady-state modeling of co-adsorption phenomena in direct air carbon-capture system using the IAST [Thesis]. Politecnico di Milano and RWTH Aachen University. 2020. Available from: http://hdl.handle.net/10589/169486.
  • Chabert J, Barbin E, Borowczyk J, et al. A history of algorithms: from the pebble to the microchip. Berlin, Heidelberg, New York: Springer; 1999.
  • Dynamic sorption methods. Nov 2022. Available from: https://www.dynamicsorption.com/dynamic-sorption-method/.
  • Patel H. Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci. 2019;9:1–17.
  • Silva J, Ferreira A, Mendes P, et al. Adsorption equilibrium and dynamics of fixed bed adsorption of CH 4/N 2 in binderless beads of 5A zeolite. Ind Eng Chem Res. 2015;54:6390–6399.
  • Wilkins N, Rajendran A, Farooq S. Dynamic column breakthrough experiments for measurement of adsorption equilibrium and kinetics. Adsorption. 2021;27:397–422.
  • Farmahini A, Krishnamurthy S, Friedrich D, et al. Performance-based screening of porous materials for carbon capture. Chem Rev. 2021;121:10666–10741.
  • Gabelman A. Adsorption basics: part 1. Chem Eng Prog. 2017;113:48–53.
  • Klaewkla R, Arend M, Hoelderich W. A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems. In: Nakajima H., editor. Mass transfer-advanced aspects. chapter 29. London: INTECH Open Access Publisher; 2011.
  • Fogler H. Elements of chemical reaction in engineering. 3th ed. Naucalpan de Juárez: Prentice-Hall of India; 1999.
  • Xu Z, Cai J-G, Pan B-C. Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ Sci A. 2013;14:155–176.
  • Jee J, Park H, Haam S, et al. Effects of nonisobaric and isobaric steps on o2 pressure swing adsorption for an aerator. Ind Eng Chem Res. 2002;41:4383–4392.
  • Kim M, Moon J, Lee C, et al. Effect of heat transfer on the transient dynamics of temperature swing adsorption process. Korean J Chem Eng. 2004;21:703–711.
  • Shafeeyan M, Daud W, Shamiri A. A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem Eng Res Des. 2014;92:961–988.
  • Sircar S, Hufton J. Why does the linear driving force model for adsorption kinetics work?. Adsorption. 2000;6:137–147.
  • Hwang K, Jun J, Lee W. Fixed-bed adsorption for bulk component system non-equilibrium, non-isothermal and non-adiabatic model. Chem Eng Sci. 1995;50:813–825.
  • Tien C. Adsorption calculations and modeling. Boston: Butterworth-Heinemann; 1994.
  • Worch E. Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. J Water Supply Res Technol AQUA. 2008;57:171–183.
  • Siahpoosh M, Fatemi S, Vatani A. Mathematical modeling of single and multi-component adsorption fixed beds to rigorously predict the mass transfer zone and breakthrough curves. Iran J Chem Chem Eng. 2009;28:25–44.
  • Supian NM, Halif NA, Rusli N. A mini-review of coupled convection-diffusion equations in a fixed-bed adsorption. IOP Conf Ser Mater Sci Eng. 2019;767:Article ID 012031.
  • Unuabonah E, Omorogie M, Oladoja N. 5 -- modeling in adsorption: fundamentals and applications. Amsterdam: Elsevier; 2019. p. 85–118.
  • Yang R. Gas separation by adsorption processes. London: Imperial College Press; 1987.
  • Thomas H. Heterogeneous ion exchange in a flowing system. J Am Chem Soc. 1944;66:1664–1666.
  • Bohart G, Adams E. Some aspects of the behavior of charcoal with respect to chlorine. J Am Chem Soc. 1920;42:523–544.
  • Yoon Y, Nelson J. Application of gas adsorption kinetics I. a theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J. 1984;45:509–516.
  • Unuabonah E, El-Khaiary M, Olu-Owolabi B, et al. Predicting the dynamics and performance of a polymer–clay based composite in a fixed bed system for the removal of lead (II) ion. Chem Eng Res Des. 2012;90:1105–1115.
  • Clark R. Evaluating the cost and performance of field-scale granular activated carbon systems. Environ Sci Technol. 1987;21:573–580.
  • Lapidus L, Amundson N. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J Phys Chem. 1952;56:984–988.
  • Plazinski W, Rudzinskia W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv Colloid Interface Sci. 2009;152:2–13.
  • Medved I, Cerny R. Surface diffusion in porous media: A critical review. Microporous Mesoporous Mater. 2011;142:405–422.
  • Fick A. Ueber diffusion. Ann Phys. 1855;170:59–86.
  • Knox J. Predictive simulation of gas adsorption in fixed-beds and limitations due to the ill-posed danckwerts boundary condition [Thesis]. Swiss School of Business Research. 2016. Available from: https://louis.uah.edu/uah-dissertations/108/.
  • de Ligny C. Coupling between diffusion and convection in radial dispersion of matter by fluid flow through packed beds. Chem Eng Sci. 1970;25:1177–1181.
  • Chung S, Wen C. Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J. 1968;14:857–866.
  • Rastegar S, Gu T. Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. J Chromatogr A. 2017;1490:133–137.
  • Edward M, Richardson J. Gas dispersion in packed beds. Chem Eng Sci. 1968;23:109–123.
  • da Silva F, Silva J, Rodrigues A. A general package for the simulation of cyclic adsorption processes. Adsorption. 1999;5:229–244.
  • Tsimpanogiannis I, Moultos O, Franco L, et al. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Mol Simul. 2019;45:425–453.
  • Celebi A, Jamali S, Bardow A, et al. Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. Mol Simul. 2021;47:831–845.
  • Cussler E. Diffusion: mass transfer in fluid systems. New York: Cambridge University Press; 2009.
  • Bird R. Transport phenomena. Appl Mech Rev. 2002;55:R1–R4.
  • Jones J. On the determination of molecular fields.–I. from the variation of the viscosity of a gas with temperature. Proc R Soc Lond Ser A-Contain Pap Math Phys Char. 1924a;106:441–462.
  • Jones J. On the determination of molecular fields.–II. from the equation of state of a gas. Proc R Soc Lond Ser A-Contain Pap Math Phys Char. 1924b;106:463–477.
  • Kärger J, Ruthven D, Theodorou D. Diffusion in nanoporous materials. Weinheim: John Wiley & Sons; 2012.
  • Crittenden J, Hutzler N, Geyer D, et al. Transport of organic compounds with saturated groundwater flow: model development and parameter sensitivity. Water Resour Res. 1986;22:271–284.
  • Kapoor A, Yang R, Wong C. Surface-diffusion. Catal Rev Sci Eng. 1989;31:129–214.
  • Rosen J. Kinetics of a fixed bed system for solid diffusion into spherical particles. J Chem Phys. 1952;20:387–394.
  • Mathews A, Weber Jr W. Effects of external mass transfer and intraparticle diffusion on adsorption in slurry reactors. AIChE Symp Ser. 1976;73:91–98.
  • Peel R, Benedek A, Crowe C. A branched pore kinetic-model for activated carbon adsorption. AIChE J. 1981;27:26–32.
  • Zhang S, Sun Y. Study on protein adsorption kinetics to a dye–ligand adsorbent by the pore diffusion model. J Chromatogr A. 2002;964:35–46.
  • Ko D, Porter J, McKay G. Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res. 2001;35:3876–3886.
  • Worch E. Modelling the solute transport under nonequilibrium conditions on the basis of mass transfer equations. J Contam Hydrol. 2004;68:97–120.
  • Rahman M, Amiri F, Worch E. Application of the mass transfer model for describing non-equilibrium transport of HOCs through natural geosorbents. Water Res. 2003;37:4673–4684.
  • Weber T, Chakravorti R. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 1974;20:228–238.
  • Spahn H, Schlunder E. The scale-up of activated carbon columns for water purification, based on results from batch tests–I: theoretical and experimental determination of adsorption rates of single organic solutes in batch tests. Chem Eng Sci. 1975;30:529–537.
  • Brauch V, Schlunder E. The scale-up of activated carbon columns for water purification, based on results from batch tests–II: theoretical and experimental determination of breakthrough curves in activated carbon columns. Chem Eng Sci. 1975;30:539–548.
  • Levenspiel O. Chemical reaction engineering. Ind Eng Chem Res. 1999;38:4140–4143.
  • Yang X, Otto S, Al-Duri B. Concentration-dependent surface diffusivity model (CDSDM): numerical development and application. Chem Eng J. 2003;94:199–209.
  • Rudin A, Choi P. The elements of polymer science and engineering: an introductory text for engineers and chemists. 3th ed. Oxford: Academic Press; 2012.
  • Kooijman H, Taylor R. Estimation of diffusion-coefficients in multicomponent liquid-systems. Ind Eng Chem Res. 1991;30:1217–1222.
  • Theodorou D, Snurr R, Bell A. Molecular dynamics and diffusion in microporous materials. In Alberti G and Bein T, editors. Comprehensive Supramolecular Chemistry. Vol. 7, chapter 18. Oxford: Pergamon Oxford; 1996. p. 507–548.
  • Krishna R. Diffusion in porous crystalline materials. Chem Soc Rev. 2012;41:3099–3118.
  • Krishna R, Taylor R. Multicomponent mass transfer-theory and applications. chapter 7. Houston: Gulf PublishingCo.; 1986.
  • Krishna R, Baur R. Modelling issues in zeolite based separation processes. Sep Purif Technol. 2003;33:213–254.
  • Ramanan H, Auerbach S. Molecular dynamics and diffusion in microporous materials. In: Conner WC and Fraissard J, editors. Fluid Transport in Nanoporous Materials. Proceedings of the NATO Advanced Study Institute. Dordrecht: Springer; 2006. p. 93–124.
  • Krishna R, van Baten J. Describing binary mixture diffusion in carbon nanotubes with the Maxwell-Stefan equations. an investigation using molecular dynamics simulations. Ind Eng Chem Res. 2006;45:2084–2093.
  • Dubbeldam D, Snurr R. Recent developments in the molecular modeling of diffusion in nanoporous materials. Mol Simul. 2007;33:305–325.
  • Valkovska D, Danov K. Determination of bulk and surface diffusion coefficients from experimental data for thin liquid film drainage. J Colloid Interface Sci. 2000;223:314–316.
  • LeVan M, Carta G, Carmen M. Adsorption and ion exchange. In: Perry R. and Green D, editors. Perry's chemical engineers' handbook. New York: McGraw-Hill; 2008.
  • Hand D, Crittenden J, Thacker W. Simplified models for design of fixed-bed adsorption systems. J Environ Eng. 1984;110:440–456.
  • Baup S, Jaffre C, Wolbert D, et al. Adsorption of pesticides onto granular activated carbon: determination of surface diffusivities using simple batch experiments. Adsorption. 2000;6:219–228.
  • Ozdural A. 2.51 -- modeling chromatographic separation. 3rd ed. Oxford: Pergamon; 2017. p. 754–772.
  • Al-Duri B. Adsorption modelling and mass transfer. In: McKay G, editor. Use of adsorbents for the removal of pollutants from wastewaters. Boca Raton: CRC Press; 1996. p. 133–173.
  • Liaw C, Wang J, Greenkorn R, et al. Kinetics of fixed-bed adsorption -- new solution. AIChE J. 1979;25:376–381.
  • Alvarez-Ramirez J, Fernandez-Anaya G, Valdes-Parada F, et al. Physical consistency of generalized linear driving force models for adsorption in a particle. Ind Eng Chem Res. 2005;44:6776–6783.
  • Krishna R. A Maxwell-Stefan-Glueckauf description of transient mixture uptake in microporous adsorbents. Sep Purif Technol. 2018;191:392–399.
  • Mota J, Rodrigo A. Calculations of multicomponent adsorption-column dynamics combining the potential and ideal adsorbed solution theories. Ind Eng Chem Res. 2000;39:2459–2467.
  • Sperlich A, Schimmelpfennig S, Baumgarten B, et al. Predicting anion breakthrough in Granular Ferric Hydroxide (GFH) adsorption filters. Water Res. 2008;42:2073–2082.
  • Bodin J. MFIT 1.0. 0: multi-flow inversion of tracer breakthrough curves in fractured and karst aquifers. Geosci Model Dev. 2020;13:2905–2924.
  • Kane A, Giraudet S, Vilmain J-B, et al. Intensification of the temperature-swing adsorption process with a heat pump for the recovery of dichloromethane. J Environ Chem Eng. 2015;3:734–743.
  • Möller A, Eschrich R, Reichenbach C, et al. Dynamic and equilibrium-based investigations of CO 2-removal from CH 4-rich gas mixtures on microporous adsorbents. Adsorption. 2017;23:197–209.
  • Aspen Adsorption. Dec 2022. Available from: https://www.aspentech.com/en/products/pages/aspen-adsorption.
  • Zhang R, Shen Y, Tang Z, et al. A review of numerical research on the pressure swing adsorption process. Processes. 2022;10:812.
  • gPROMS. Dec 2022. Available from: https://www.psenterprise.com/products/gproms.
  • MATLAB. Dec 2022. Available from: https://nl.mathworks.com/products/matlab.html.
  • Ansys Fluent. Fluid simulation software. Dec 2022. Available from: https://www.ansys.com/products/fluids/ansys-fluent.
  • Chung YG, Bai P, Haranczyk M, et al. Computational screening of nanoporous materials for hexane and heptane isomer separation. Chem Mater. 2017;29:6315–6328.
  • Darcy H. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau: ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitume. Vol. 2. Paris: V. Dalmont; 1856.
  • Ergun S. Fluid flow through packed columns. Chem Eng Prog. 1952;48:89–94.
  • Carman P. Fluid flow through a granular bed. Trans Inst Chem Eng Lond. 1937;15:150–156.
  • Cheng A, Cheng D. Heritage and early history of the boundary element method. Eng Ana Bound Elmnts. 2005;29:268–302.
  • Mott H, Green Z. On Danckwerts' boundary conditions for the plug-flow with dispersion/reaction model. Chem Eng Comm. 2015;202:739–745.
  • Anderson J, Wendt J. Computational fluid dynamics. Vol. 206. Heidelberg: Springer; 1995.
  • Versteeg H, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Glasgow: Pearson education; 2007.
  • Ottosen N, Petersson H. Introduction to finite element method. New York: Prentice Hall; 1996.
  • Schiesser W. The numerical method of lines: integration of partial differential equations. London: Elsevier; 2012.
  • Nilchan S, Pantelides C. On the optimisation of periodic adsorption processes. Adsorption. 1998;4:113–147.
  • Cruz P, Santos J, Magalhães F, et al. Simulation of separation processes using finite volume method. Comput Chem Eng. 2005;30:83–98.
  • Kikkinides E, Yang R. Effects of bed pressure drop on isothermal and adiabatic adsorber dynamics. Chem Eng Sci. 1993;48:1545–1555.
  • Schiesser W. Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. Boca Raton: CRC Press; 2014.
  • Langtangen H, Linge S. Finite difference computing with PDEs: a modern software approach. Cham: Springer Nature; 2017.
  • Butcher J. Numerical methods for ordinary differential equations. West Sussex: John Wiley & Sons; 2016.
  • Iserles A. A first course in the numerical analysis of differential equations. Cambridge: Cambridge University Press; 2009.
  • Press WH, Teukolsky SA, Vetterling WT, et al. Numerical recipes in fortran 90: the art of scientific computing. New York: Cambridge University Press; 1996.
  • Verwer J, Sommeijer B. An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations. SIAM J Sci Comput. 2004;25:1824–1835.
  • Deuflhard P, Hairer E, Zugck J. One-step and extrapolation methods for differential-algebraic systems. Numer Math. 1987;51:501–516.
  • Butcher J. Implicit Runge-Kutta processes. Math Comput. 1964;18:50–64.
  • Press W, Teukolsky S. Adaptive stepsize Runge-Kutta integration. Comput Phys. 1992;6:188–191.
  • Torres-Knoop A, Dubbeldam D. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms. Chem Phys Chem. 2015;16:2046–2067.
  • Jolimaitre E, Ragil K, Tayakout-Fayolle M, et al. Separation of mono and dibranched hydrocarbons on silicalite. AIChE J. 2002;48:1927–1937.
  • Caceci M, Cacheris W. Fitting curves to data. Byte. 1984;9:340–362.
  • Motulsky H, Ransnas L. Fitting curves to data using nonlinear regression: a practical and non-mathematical review. The FASEB J. 1987;1:365–374.
  • Jaraíz-Arroyo I, Martin-Calvo A, Gutiérrez-Sevillano J, et al. OCEAN: an algorithm to predict the separation of biogas using zeolites. Ind Eng Chem Res. 2020;59:7212–7223.
  • Anderson R, Gómez-Gualdróna D. Deep learning combined with IAST to screen thermodynamically feasible mofs for adsorption-based separation of multiple binary mixtures. J Chem Phys. 2021;154:Article ID 234102.
  • Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56:658–666.
  • Dowd J, Riggs D. A comparison of estimates of michaelis-menten kinetic constants from various linear transformations. J Biol Chem. 1965;240:863–869.
  • Eadie G. The inhibition of cholinesterase by physostigmine and prostigmine. J Bio Chem. 1942;146:85–93.
  • Hofstee B. Non-inverted versus inverted plots in enzyme kinetics. Nature. 1959;184:1296–1298.
  • Scatchard G. The attractions of proteins for small molecules and ions. Ann NY Acad Sci. 1949;51:660–672.
  • Kinniburgh D. General purpose adsorption isotherms. Environ Sci Technol. 1986;20:895–904.
  • Magreñán A, Argyros I. A contemporary study of iterative methods. London: Elsevier; 2018.
  • Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart Appl Math. 1944;2:164–168.
  • Girard A. Excerpt from revue d'optique théorique et instrumentale. Rev Opt. 1958;37:225–241.
  • Wynne C. Lens designing by electronic digital computer: I. Proc Phys Soc. 1959;73:777–787.
  • Morrison D. Methods for nonlinear least squares problems and convergence proofs. In: J. Lorell F. Yagi, editor. Proceedings of the Seminar on Tracking Programs and Orbit Determination. Pasadena, USA: Jet Propulsion Laboratory; 1960. p. 1–9.
  • Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math. 1963;11:431–441.
  • Sorensen D. Newton's method with a model trust region modification. SIAM J Numer Anal. 1982;19:409–426.
  • Hestenes M, Stiefel E. Methods of conjugate gradients for solving. J Res Nat Bur Stand. 1952;49:409.
  • Broyden C. The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math. 1970;6:76–90.
  • Fletcher R. A new approach to variable metric algorithms. Comput J. 1970;13:317–322.
  • Goldfarb D. A family of variable-metric methods derived by variational means. Math Comput. 1970;24:23–26.
  • Shanno D. Conditioning of quasi-newton methods for function minimization. Math Comput. 1970;24:647–656.
  • Liu D, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program. 1989;45:503–528.
  • Spendley W, Hext G, Himsworth F. Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics. 1962;4:441–461.
  • De Jong K. An analysis of the behavior of a class of genetic adaptive systems [PhD thesis]. University of Michigan. 1975. Available from: https://deepblue.lib.umich.edu/handle/2027.42/4507.
  • Holland J, Mahajan M, Kumar S, et al. Adaptation in natural and artificial systems. In: Applying genetic algorithm to increase the efficiency of a data flow-based test data generation approach. The University of Michigan Press; 1975. p. 1–5.
  • Koza J, Poli R. A genetic programming tutorial. In Introductory tutorials in optimization, search and decision support. chapter 8. New York: Springer; 2003. p. 143–185.
  • Hirsh H, Banzhaf W, Koza J, et al. Genetic programming. IEEE Intell Syst. 2000;15:74–84.
  • Emmerich M, Shir O, Wang H. Evolution strategies. In: Handbook of heuristics. Cham: Springer International Publishing; 2018. p. 1–31.
  • Eiben A, Smith J. Introduction to evolutionary computing, Verlag/Berlin/Heidelberg: Springer; 2003. (Natural Computing Series).
  • Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN' 95 -- International Conference on Neural Networks. Honolulu: IEEE; 1995.
  • Shi Y, Eberhart R. A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Anchorage: IEEE; 1998.
  • Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1:28–39.
  • Yang X, Deb S. Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore: IEEE; 2009. p. 210–214.
  • Mirjalili S, Mirjalili S, Lewis A. Grey wolf optimizer. Adv Eng Softw. 2014;69:46–61.
  • Li K, Li S, Huang Z, et al. Grey Wolf Optimization algorithm based on Cauchy-Gaussian mutation and improved search strategy. Sci. Rep. 2022;12:18961.
  • Schütz G, Trimper S. Elephants can always remember: exact long-range memory effects in a non-markovian random walk. Phys Rev E. 2004;70:045101.
  • Gopinath A, Aravamudan K. A novel, initial guess free optimization algorithm for estimating parameters of batch kinetics model used to simulate adsorption of pollutant molecules in aqueous streams. J Mol Liq. 2019;275:510–522.
  • Kinniburgh D. ISOTHERM. a computer program for analyzing adsorption data. British Geological Survey, Wallingford. 1985. (Report WD/ST/85/02).
  • Kinniburgh D. FIT: User Guide. British Geological Survey, Wallingford. 1985. (Report WD/93/23).
  • Matott L, Rabideau A. ISOFIT – a program for fitting sorption isotherms to experimental data. Environ Model Softw. 2008;23:670–676.
  • Virtanen P, Gommers R, Oliphant T, et al. SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods. 2020;17:261–272.
  • Gough B. GNU scientific library reference manual. Devon: Network Theory Ltd.; 2009.
  • Williams T, Kelley C, Bröker HB. Gnuplot 4.6: an interactive plotting program. Apr 2013. Available from: http://gnuplot.sourceforge.net/.
  • Eaton JW, Bateman D, Hauberg S, et al. GNU Octave version 8.1.0 manual: a high-level interactive language for numerical computations. 2023. Available from: https://octave.org/doc/v8.1.0/.
  • OriginLab Corporation. Origin(pro), 2020b. OriginLab Corporation, Northampton, MA, USA. Apr 2020.
  • Charbonneau P. Genetic algorithms in astronomy and astrophysics. Astrophys J Suppl Ser. 1995;101:309.
  • Lagarias J, Reeds J, Wright M, et al. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim. 1998;9:112–147.
  • Gao F, Han L. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl. 2010;51:259–277.
  • Byrd R, Schnabel R, Shultz G. A trust region algorithm for nonlinearly constrained optimization. SIAM J Numer Anal. 1987;24:1152–1170.
  • Branch M, Coleman T, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput. 1999;21:1–23.
  • Tomar S. Converting video formats with FFmpeg. Linux J. 2006;2006:10.
  • Janert P. Gnuplot in action: understanding data with graphs. 2nd ed. Greenwich: Manning Publications Co.; 2015.