214
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Relaxation dynamics in lattice reverse Monte Carlo

, & ORCID Icon
Pages 993-1005 | Received 14 Nov 2022, Accepted 04 Apr 2023, Published online: 20 Apr 2023

References

  • McGreevy RL, Pusztai L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol Simul [Internet]. 1988;1:359–367. doi:10.1080/08927028808080958
  • Wikfeldt KT, Leetmaa M, Ljungberg MP, et al. On the range of water structure models compatible with X-ray and neutron diffraction data. J Phys Chem B. 2009;113:6246. doi:10.1021/jp9007619
  • Harsányi I, Pusztai L. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data. J Chem Phys. 2012;137:204503. doi:10.1063/1.4767437
  • Howe MA, Mcgreevy RL, Pusztai L, et al. Determination of three body correlations in simple liquids by RMC modelling of diffraction data. II. Elemental liquids. Phys Chem Liq. 1993;25:205–241. doi:10.1080/00319109308030363
  • Veglio N, Bermejo FJ, Pardo LC, et al. Direct experimental assessment of the strength of orientational correlations in polar liquids. Phys Rev E. 2005;72:031502. doi:10.1103/PhysRevE.72.031502
  • McGreevy RL, Pusztai L. The structure of molten salts. Proc R Soc London Ser A Math Phys Sci. 1990;430:241–261.
  • Kaban I, Jóvári P, Stoica M, et al. Topological and chemical ordering in Co 43 Fe 20 Ta 5.5 B 31.5 metallic glass. Phys Rev B. 2009;79:212201. doi:10.1103/PhysRevB.79.212201
  • Keen DA, McGreevy RL. Structural modelling of glasses using reverse Monte Carlo simulation. Nature. 1990;344:423. doi:10.1038/344423a0
  • Keen DA, Tucker MG, Dove MT. Reverse Monte Carlo modelling of crystalline disorder. J Phys Condens Matter. 2005;17:S15–S22. doi:10.1088/0953-8984/17/5/002
  • Thomson KT, Gubbins KE. Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir. 2000;16:5761–5773. doi:10.1021/la991581c
  • Pikunic J, Clinard C, Cohaut N, et al. Structural modeling of porous carbons:  constrained reverse Monte Carlo method. Langmuir. 2003;19:8565–8582. doi:10.1021/la034595y
  • Tucker MG, Keen DA, Dove MT, et al. Rmcprofile: reverse Monte Carlo for polycrystalline materials. J Phys Condens Matter. 2007: 19.
  • Keen DA, McGreevy RL. Determination of disordered magnetic structures by RMC modelling of neutron diffraction data. J Phys Condens Matter. 1991;3:7383–7394. doi:10.1088/0953-8984/3/38/010
  • Gurman SJ, McGreevy RL. Reverse Monte Carlo simulation for the analysis of EXAFS data. J Phys Condens Matter. 1990;2:9463–9473. doi:10.1088/0953-8984/2/48/001
  • Evrard G, Pusztai L. Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: A new implementation of the algorithm in C++. J Phys Condens Matter. 2005.
  • Opletal G, Petersen TC, Russo SP. HRMC_2.1: hybrid reverse Monte Carlo method with silicon, carbon, germanium and silicon carbide potentials. Comput Phys Commun. 2014;185:1854–1855. doi:10.1016/j.cpc.2014.02.025
  • Aoun B. Fullrmc, a rigid body reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence. J Comput Chem. 2016;37:1102–1111. doi:10.1002/jcc.24304
  • Timoshenko J, Kuzmin A, Purans J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput Phys Commun. 2012;183:1237–1245. doi:10.1016/j.cpc.2012.02.002
  • Rutledge GC. Modeling experimental data in a Monte Carlo simulation. Phys Rev E [Internet]. 2001;63:21111. Available from: https://link.aps.org/doi/10.1103PhysRevE.63.021111
  • Wilding NB. A nonequilibrium Monte Carlo approach to potential refinement in inverse problems. J Chem Phys [Internet]. 2003;119:12163–12168. doi:10.1063/1.1626635
  • Lyubartsev AP, Laaksonen A. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys Rev E. 1995;52:3730–3737. doi:10.1103/PhysRevE.52.3730
  • Tóth G. Interactions from diffraction data: historical and comprehensive overview of simulation assisted methods. J Phys Condens Matter [Internet]. 2007;19:335220. doi:10.1088/0953-8984/19/33/335220
  • Schommers W. A pair potential for liquid rubidium from the pair correlation function. Phys Lett A [Internet]. 1973;43:157–158. Available from: https://www.sciencedirect.com/science/article/pii/0375960173905914.
  • Soper AK. Partial structure factors from disordered materials diffraction data: an approach using empirical potential structure refinement. Phys Rev B [Internet]. 2005;72:104204. Available from: https://link.aps.org/doi/10.1103PhysRevB.72.104204
  • Agrahari G, Chatterjee A. Speed-up of Monte Carlo simulations by preparing starting off-lattice structures that are close to equilibrium. J Chem Phys [Internet]. 2020;152:044102. doi:10.1063/1.5131303
  • Agrahari G, Chatterjee A. Thermodynamic calculations using reverse Monte Carlo. Phys Rev E. 2021;104:044129. doi:10.1103/PhysRevE.104.044129
  • Agrahari G, Chatterjee A. Thermodynamic calculations using reverse Monte Carlo: convergence aspects, sources of error and guidelines for improving accuracy. Mol Simul. 2022;48:1143–1154. doi:10.1080/08927022.2022.2072497
  • Ball AK, Swati R, Agrahari G, et al. Accelerated calculation of configurational free energy using a combination of reverse Monte Carlo and neural network models: adsorption isotherm for 2D square and triangular lattices. Comput Phys Commun. 2023;285:108654. doi:10.1016/j.cpc.2022.108654
  • Kumar A, Chatterjee A. A probabilistic microkinetic modeling framework for catalytic surface reactions. J Chem Phys. 2023;158:0024109. doi:10.1063/5.0132877.
  • Farrow CL, Juhas P, Liu JW, et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys Condens Matter [Internet]. 2007;19:335219. doi:10.1088/0953-8984/19/33/335219
  • Flegal JM, Gong L. Relative fixed-width stopping rules for Markov chain Monte Carlo simulations. Stat Sin. 2015: 655–675.
  • Gong L, Flegal JM. A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo. J Comput Graph Stat. 2016;25:684–700. doi:10.1080/10618600.2015.1044092
  • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–472.
  • Geweke J. Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Bayesian Stat. 1992;4:641–649.
  • Raftery AE, Lewis S. How many iterations in the Gibbs sampler? Bayesian statistics 4 (Bernardo, JM, Berger, JO, Dawid, AP and Smith, AFM, eds). Oxford: Oxford University Press; 1992.
  • Yu B. Estimating l1 error of kernel estimator: monitoring convergence of Markov samplers. Cah Rech Tech report. Berkeley: Dept Stat Univ California; 1995.
  • Tóth G, Baranyai A. Conceptual and technical improvement of the reverse Monte Carlo algorithm. J Chem Phys [Internet]. 1997;107:7402–7408. doi:10.1063/1.474978
  • Baranyai A, Tóth G. Fluctuation of the pair-correlation function. J Chem Phys [Internet]. 1997;107:8575–8576. doi:10.1063/1.475009
  • Hill TL. An introduction to statistical thermodynamics. New York: Dover; 1986.
  • Allen MP, Tildesley DJ. Computer simulation of liquids. 2nd ed. Oxford: Oxford University Press; 2017.
  • McGreevy RL. Reverse Monte Carlo modelling. J Phys Condens Matter [Internet]. 2001;13:R877–R913. doi:10.1088/0953-8984/13/46/201
  • Bousige C, Boţan A, Ulm FJ, et al. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics. J Chem Phys. 2015: 142.
  • Opletal G, Petersen T, O’Malley B, et al. Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo. Mol Simul. 2002;28:927–938. doi:10.1080/089270204000002584
  • McGreevy RL, Howe MA. RMC: modeling disordered structures. Annu Rev Mater Sci. 1992;22:217–242. doi:10.1146/annurev.ms.22.080192.001245
  • Nield VM, Keen DA, McGreevy RL. The interpretation of single-crystal diffuse scattering using reverse Monte Carlo modelling. Acta Crystallogr Sect A. 1995;51:763–771. doi:10.1107/S0108767395004399
  • Hong C, Xiang W, Jun-xin F. Relaxation in condensed matter: a fractal time model. J Phys C Solid State Phys [Internet]. 1986;19:L499–L503. doi:10.1088/0022-3719/19/22/005.
  • Cardona M, Chamberlin RV, Marx W. The history of the stretched exponential function. Ann Phys [Internet]. 2007;519:842–845. doi:10.1002/andp.20075191206
  • Wilkinson CJ, Doss K, Gulbiten O, et al. Fragility and temperature dependence of stretched exponential relaxation in glass-forming systems. J Am Ceram Soc [Internet]. 2021;104:4559–4567. doi:10.1111/jace.17885
  • Mauro JC, Smedskjaer MM. Statistical mechanics of glass. J Non Cryst Solids [Internet]. 2014;396–397:41–53. Available from: https://www.sciencedirect.com/science/article/pii/S0022309314001665.
  • Phillips JC. Stretched exponential relaxation in molecular and electronic glasses. Reports Prog Phys [Internet]. 1996;59:1133. doi:10.1088/0034-4885/59/9/003
  • Zanzotto L, Stastna J. Dynamic master curves from the stretched exponential relaxation modulus. J Polym Sci Part B Polym Phys [Internet]. 1997;35:1225–1232. doi:10.1002/(SICI)1099-0488(199706)35:8<1225::AID-POLB8>3.0.CO;2-S
  • da Silva FLB, Olivares-Rivas W, Degrève L, et al. Application of a new reverse Monte Carlo algorithm to polyatomic molecular systems. I. Liquid Water. J Chem Phys [Internet]. 2000;114:907–914. Available from: https://aip.scitation.org/doi/abs/10.10631.1321766.
  • da Silva FLB, Olivares-Rivas W, Colmenares PJ. Basic statistics and variational concepts behind the reverse Monte Carlo technique. Mol Simul [Internet]. 2007;33:639–647. doi:10.1080/08927020701361884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.