319
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential inhibitors of Leishmania donovani Sterol 24-C- methyltransferase: in silico and in vitro studies

, , , , ORCID Icon &
Pages 1311-1323 | Received 16 Feb 2023, Accepted 09 Jun 2023, Published online: 28 Jun 2023

References

  • Karunaweera ND, Ferreira MU. Leishmaniasis: current challenges and prospects for elimination with special focus on the south Asian region. Parasitology. 2018;145(4):425–429. doi:10.1017/S0031182018000471.
  • Van Griensven J, Carrillo E, López-Vélez R, et al. Leishmaniasis in immunosuppressed individuals. Clinical Microbiology and Infection. 2014;20(4):286–299. doi:10.1111/1469-0691.12556.
  • Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther. 2018;12:25–40. doi:10.2147/DDDT.S146521.
  • Singh OP, Singh B, Chakravarty J, et al. Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infect Dis Poverty. 2016 Mar 8;5:19. doi:10.1186/s40249-016-0112-2.
  • Sindermann H, Engel KR, Fischer C, et al.. ; Miltefosine Compassionate Use Program. Oral miltefosine for leishmaniasis in immunocompromised patients: compassionate use in 39 patients with HIV infection. Clin Infect Dis. 2004;39(10):1520–3. doi:10.1086/425359.
  • Gupta AK, Das S, Kamran M, et al. The pathogenicity and virulence of Leishmania - interplay of virulence factors with host defenses. Virulence. 2022;13(1):903–935. doi:10.1080/21505594.2022.2074130.
  • He X, Zhang B, Tan H. Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol Lett. 2003;25(10):773–8. doi:10.1023/a:1023572403185.
  • Chawla B, Madhubala R. Drug targets in Leishmania. J Parasit Dis. 2010;34(1):1–13. doi:10.1007/s12639-010-0006-3.
  • de Souza W, Rodrigues JCF. Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis. 2009;2009:642502. doi:10.1155/2009/642502.
  • Viegas C, Da V, Bolzani S, et al. Os produtos naturais e a química medicinal moderna. Quim. Nova. 2006;29(2):326–337. doi:10.1590/S0100-40422006000200025.
  • Winkel BSJ. The Biosynthesis of Flavonoids. In: Grotewold, E. (eds) The Science of Flavonoids. Springer, New York, NY. 2006. doi:10.1007/978-0-387-28822-2_3
  • Ioset J-R. Natural products for neglected diseases: a review. Curr Org Chem. 2008;12(8):643– 666. doi:10.2174/138527208784577394.
  • Gervazoni LFO, Barcellos GB, Ferreira-Paes T, et al. Use of natural products in Leishmaniasis chemotherapy: an overview. Front Chem. Frontiers Media S.A. 2020;8:579891. doi:10.3389/fchem.2020.579891.
  • Saha S, Mukherjee T, Chowdhury S, et al. The lignan glycosides lyoniside and saracoside poison the unusual type IB topoisomerase of Leishmania donovani and kill the parasite both in vitro and in vivo. Biochem Pharmacol. 2013;86(12):1673–87. doi:10.1016/j.bcp.2013.10.004.
  • Silva LG, Gomes KS, TA C-S, et al. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Nat Prod Res. 2021;35(23):5373–5377. doi:10.1080/14786419.2020.1765347.
  • dos Santos Maia M, Silva JPR, de Lima Nunes TA, et al. Virtual screening and the in vitro assessment of the antileishmanial activity of lignans. Molecules. 2020;25(10):2281. doi:10.3390/molecules25102281.
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40. doi:10.1186/1471-2105-9-40.
  • Laskowski R, Macarthur BA, Thornton MW Computer programs PROCHECK: a program to check the stereochemicai quality of protein structures. Phys. Status Solidi B. 1983.
  • Ansari WA, Rizvi F, Khan MA, et al.. Computational Study Reveals the Inhibitory Effects of Chemical Constituents from Azadirachta indica (Indian Neem) Against Delta and Omicron Variants of SARS-CoV-2. Coronaviruses. 2022;3 (5):e270822208065. doi:10.2174/2666796703666220827100054.
  • Krieger E, Joo K, Lee J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Prot: Struct, Funct Bioinform. 2009;77 Suppl 9(Suppl 9):114–122. doi:10.1002/prot.22570.
  • Eisenberg D, Lothy R, Bowie JU.. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277:396–404. doi:10.1016/s0076-6879(97)77022-8.
  • Sievers F, Higgins DG. Clustal omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology. 2014;1079:105–116. doi:10.1007/978-1-62703-646-7_6.
  • Tian W, Chen C, Lei X, et al. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–W367. doi:10.1093/nar/gky473.
  • Lill MA, Danielson ML. Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des. 2011;25(1):13–19. doi:10.1007/s10822-010-9395-8.
  • Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–61. doi:10.1002/jcc.21334.
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions . Protein Eng. 1995;8(2):127–34. doi:10.1093/protein/8.2.127.
  • Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.007.
  • Case DA, Cheatham Iii TE, Darden T, et al.. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–88. doi:10.1002/jcc.20290.
  • Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. parameterization and validation. Journal of Computational Chemistry. 2002;23(16):1623–1641. doi:10.1002/jcc.10128.
  • Sousa da Silva AW, Vranken WF.. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5:367. doi:10.1186/1756-0500-5-367.
  • Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Journal of Physical Chemistry B. 2008;112(30):9020–9041. doi:10.1021/jp8001614.
  • Pandey P, Prasad K, Prakash A, et al. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. J Mol Med. 2020;98(12):1659–1673. doi:10.1007/s00109-020-01980-1.
  • Kumar N, Srivastava R, Prakash A, et al. Virtual screening and free energy estimation for identifying mycobacterium tuberculosis flavoenzyme DprE1 inhibitors. J Mol Graph Model. 2021;102; 107770. doi:10.1016/j.jmgm.2020.107770.
  • Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. PROTEINS: Structure, Function, and Genetics. 1993;17(4):412–25. doi:10.1002/prot.340170408.
  • David CC, Jacobs DJ. Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology. 2014;1084:193–226. doi:10.1007/978-1-62703-658-0_11.
  • Mishra CB, Shalini S, Gusain S, et al. Development of novel: N -(6-methanesulfonyl-benzothiazol-2-yl)-3-(4-substituted-piperazin-1-yl)-propionamides with cholinesterase inhibition, anti-β-amyloid aggregation, neuroprotection and cognition enhancing properties for the therapy of Alzheimer’s disease. RSC Adv. 2020;10:17602–17619. doi:10.1039/D0RA00663G.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461. doi:10.1517/17460441.2015.1032936.
  • Miller BR, McGee TD, Swails JM, et al. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–3321. doi:10.1021/ct300418h.
  • van Meerloo J, Kaspers GJL, Cloos J.. Cell sensitivity assays: the MTT assay.. Methods Mol Biol. 2011;731:237–45. doi:10.1007/978-1-61779-080-5_20.
  • Baranwal A, Chiranjivi AK, Kumar A, et al. Design of commercially comparable nanotherapeutic agent against human disease-causing parasite, Leishmania. Sci Rep. 2018;8(1):8814. doi:10.1038/s41598-018-27170-1.
  • Rodina A, Godson GN. Role of conserved amino acids in the catalytic activity of Escherichia coli primase. J Bacteriol. 2006;188(10):3614–3621. doi:10.1128/JB.188.10.3614-3621.2006.
  • Geeganage S, Ling VW, Frey PA. Roles of two conserved amino acid residues in the active site of galactose-1-phosphate uridylyltransferase: An essential serine and a nonessential cysteine. Biochemistry. 2000;39(18):5397–5404. doi:10.1021/bi992594s.
  • Liu J, Ganapathy K, Wywial E, et al. Effect of substrate features and mutagenesis of active site tyrosine residues on the reaction course catalyzed by Trypanosoma brucei sterol C-24-methyltransferase. Biochemical Journal. 2011;439(3):413–428. doi:10.1042/BJ20110865.
  • Broni E, Kwofie SK, Asiedu SO, et al. A molecular modeling approach to identify potential antileishmanial compounds against the cell division cycle (Cdc)-2-related kinase 12 (crk12) receptor of leishmania donovani. Biomolecules. 2021;11(3); 458. doi:10.3390/biom11030458.
  • Nisha CM, Kumar A, Nair P, et al. Molecular docking and in silico admet study reveals acylguanidine 7a as a potential inhibitor of β -secretase. Adv Bioinformatics. 2016;2016:9258578. doi:10.1155/2016/9258578.
  • Kumar SP, Patel CN, Rawal RM, et al. Energetic contributions of amino acid residues and its cross-talk to delineate ligand-binding mechanism. Proteins. 2020;88(9):1207–1225. doi:10.1002/prot.25894.
  • Luthra PM, Prakash A, Barodia SK, et al. In silico study of naphtha [1, 2-d] thiazol-2-amine with adenosine A2A receptor and its role in antagonism of haloperidol-induced motor impairments in mice. Neurosci Lett. 2009;463(3):215–218. doi:10.1016/j.neulet.2009.07.085.
  • Garg A, Tewari R, Raghava GPS. Virtual screening of potential drug-like inhibitors against lysine/DAP pathway of mycobacterium tuberculosis. BMC Bioinform. 2010;11 Suppl 1(Suppl 1):S53. doi:10.1186/1471-2105-11-S1-S53.
  • Azam SS, Abbasi SW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model. 2013;10:63. doi:10.1186/1742-4682-10-63.
  • Prakash A, Kumar V, Meena NK, et al. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv. 2018;8:19835–19845. doi:10.1039/C8RA03368D.
  • Prakash A, Kumar V, Pandey P, et al. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. J Biomol Struct Dyn. 2018;36(10):2605–2617. doi:10.1080/07391102.2017.1364670.
  • Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of Apigenin. Int J Mol Sci. MDPI AG. 2019;20(6):1305. doi:10.3390/ijms20061305.
  • Naddaf N, Haddad S. Apigenin effect against Leishmania tropica amastigotes in vitro. Journal of Parasitic Diseases. 2020;44(3):574–578. doi:10.1007/s12639-020-01230-8.
  • Tasdemir D, Kaiser M, Brun R, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues. In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother. 2006;50(4):1352–1364. doi:10.1128/AAC.50.4.1352-1364.2006.
  • El-desoky AH, Abdel-Rahman RF, Ahmed OK, et al. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: In vitro and in vivo evidence. Phytomedicine. 2018;42:126–134. doi:10.1016/j.phymed.2018.03.051.
  • Huwait E, Mobashir M. Potential and therapeutic roles of diosmin in human diseases. Biomedicines. 2022;10(5):1076. doi:10.3390/biomedicines10051076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.