112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Unravelling the structural and dynamical properties of concentrated aqueous ammonium nitrate solutions: MD simulation studies

&
Pages 1413-1430 | Received 08 Jul 2022, Accepted 30 Jun 2023, Published online: 21 Jul 2023

References

  • Wolynes PG. Dynamics of electrolyte solutions. Annu Rev Phys Chem. 1980;31:345–376.
  • Karim OA, McCammon JA. Dynamics of a sodium chloride ion pair in water. J Am Chem Soc. 1986;108:1762–1766.
  • Eggerer H, Huber R. Structural and functional aspects of enzyme catalysis: 32. Colloquium, 23. - 25. April 1981, Springer-Verlag, Berlin Heidelberg, 1981.
  • Späth A, König B. Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J Org Chem. 2010;32:1–11.
  • Rindt DW, Blouin GM, Getsinger JG. Sulfur coating on nitrogen fertilizer to reduce dissolution rate. J Agric Food Chem. 1968;16:773–778.
  • Boyko A, Matsuoka A, Kovalchuk I. High frequency agrobacterium tumefaciens-mediated plant transformation induced by ammonium nitrate. Plant Cell Rep. 2009;28:737–757.
  • Fabbiani FPA, Pulham CR. High-pressure studies of pharmaceutical compounds and energetic materials. Chem Soc Rev. 2006;35:932–942.
  • Gorbovskiy K, Kazakov A, Malyavin ANA, et al. Properties of complex ammonium nitrate-based fertilizers depending on the degree of phosphoric acid ammoniation. Int J Ind Chem. 2017;8:315–327.
  • Cagnina S, Rotureau P, Adamo C. Study of incompatibility of ammonium nitrate and its mechanism of decomposition by theoretical approach. Chem Eng Trans. 2013;31:823–828.
  • Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater. 1999;67:253–281.
  • Kondrikov BN, Annikov VE, Egorshev VY, et al. Combustion of ammonium nitrate-based compositions, metal-containing and water-impregnated compounds. J Propul Power. 1999;15:763–771.
  • Sorescu DC, Thompson DL. Classical and quantum mechanical studies of crystalline ammonium nitrate. J Phys Chem A. 2001;105:720–733.
  • Alagona G, Ghio C, Kollman P. Monte carlo simulation studies of the solvation of ions. 1. Acetate anion and methylammonium cation. J Am Chem Soc. 1986;108:185–191.
  • Yu H, Duan D, Liu H, et al. Ultrastructural characterization of the lower motor system in a mouse model of krabbe disease. Sci Rep. 2016;6:1–9.
  • Velardez GF, Alavi S, Thompson DL. Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate. J Chem Phys. 2004;120:9152–9158.
  • Bodo E, Postorino P, Mangialardo S, et al. Structure of the molten salt methyl ammonium nitrate explored by experiments and theory. J Phys Chem B. 2011;115:13149–13161.
  • Cagnina S, Rotureau P, Singh S, et al. Theoretical and experimental study of the reaction between ammonium nitrate and sodium salts. Ind Eng Chem Res. 2016;55:12183–12190.
  • Alavi S, Thompson DL. Proton transfer in gas-phase ammonium dinitramide clusters. J Chem Phys. 2003;118:2599–2605.
  • Shan T-R, van Duin ACT, Thompson AP. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition. J Phys Chem A. 2014;118:1469–1478.
  • Heyda J, Lund M, Ončák M, et al. Reversal of hofmeister ordering for pairing of NH4+ vs alkylated ammonium cations with halide anions in water. J Phys Chem B. 2010;114:10843–10852.
  • Walker PAM, Allen MP. A simulation study of ammonium nitrate in aqueous solution. Mol Simul. 1989;4-6:307–312.
  • Lyubartsev AP, Laaksonen A. Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation. J Phys Chem. 1996;100:16410–16418.
  • Sherman DM, Collings MD. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations. Geochem Trans. 2002;3:102–107.
  • Kohagen M, Mason PE, Jungwirth P. Accurate description of calcium solvation in concentrated aqueous solutions. J Phys Chem B. 2014;118:7902–7909.
  • Owczarek E, Rybicki M, Hawlicka E. Influence of CaCl2 on microheterogeneity of methanol-water mixtures. Chem Phys. 2009;363:78–87.
  • Fedtova MV. Structural features of concentrated aqueous NaCl solution in the sub- and supercritical state at different densities. J Mol Liq. 2008;143:35–41.
  • Pattanayak SK, Chowdhuri S. Pressure and temperature dependence on the hydrogen bonding and dynamics of ammonium ion in liquid water: A molecular dynamics simulations study. J Mol Liq. 2013;186:98–105.
  • Alavi S, Thompson DL. Theoretical study of proton transfer in ammonium nitrate clusters. J Chem Phys. 2002;117:2599–2608.
  • Szász GI, Heinzinger K. A molecular dynamics study of aqueous solutions. VIII. Improved Simulation and Structural Properties of a NH4Cl solution. Z Naturforsch. 1979;34a:840–849.
  • Bӧhm H-J, McDonald IR. An ab initio potential-energy function for NH4+ - H2O and its use in the study of ionic coordination in solution. J Chem Soc, Faraday Trans 2. 1984;80:887–898.
  • Aydin F, Zhan C, Ritt C, et al. Similarities and differences between potassium and ammonium ions in liquid water: a first-principles study. Phys Chem Chem Phys. 2020;22:2540–2548.
  • Dang LX. Solvation of ammonium ion. A molecular dynamics simulation with nonadditive potentials. Chem Phys Lett. 1993;213:541–546.
  • Tongraar A, Tangkawanwanit P, Rode BM. A combined QM/MM molecular dynamics simulations study of nitrate anion (NO3-) in aqueous solution. J Phys Chem A. 2006;110:12918–12926.
  • Choppin GR, Buijs K. Near-infrared studies of the structure of water. II. Ionic Solutions. J Chem Phys. 1963;39:2042–2048.
  • Vorgin BFJ, Knapp PS, Flint WL, et al. NMR studies of aqueous electrolyte solutions. IV. Hydration Numbers of Strong Electrolytes Determined from Temperature Effects on Proton Shifts. J Chem Phys. 1971;54:178–181.
  • Bergstrom PA, Lindgren J, Kristiansson O. An IR study of the hydration of perchlorate, nitrate, iodide, bromide, chloride and sulfate anions in aqueous solution. J Phys Chem. 1991;95:8575–8580.
  • Caminiti R, Licheri G, Piccaluga G, et al. On NO3- - H2O interactions in aqueous solutions. J Chem Phys. 1978;68:1967–1970.
  • Caminiti R, Licheri G, Paschina G, et al. Interactions and structure in aqueous NaNO3 solutions. J Chem Phys. 1980;72:4522–4528.
  • (a) Neilson GW, Adya AK, Ansell S. Neutron and X-ray diffraction studies on complex liquids. Annu Rep Prog Chem, Sect C. 2002;98:273–322; (b) Botti A, Bruni F, Imberti S, et al. Ions in water: The microscopic structure of concentrated NaOH solutions. J Chem Phys. 2004;120:10154.
  • Mancinelli R, Botti A, Bruni F, et al. Perturbation of water structure due to monovalent ions in solution. Phys Chem Chem Phys. 2007;9:2959–2967.
  • Pathak AK, Mukherjee T, Maity DK. Microhydration of NO3-: A theoretical study on structure, stability and IR spectra. J Phys Chem A. 2008;112:3399–3408.
  • (a) Howell JM, Sapse AM, Singman E, et al. Ab initio SCF calculations of NO2-(H2O)n and NO3-(H2O)n clusters. J Phys Chem. 1982;86:2345–2349; (b) Shen M, Xie Y, Schaefer III HF, et al. Hydrogen bonding between the nitrate anion (conventional and peroxy forms) and the water molecule. J Chem Phys. 1990;93:3379–3388; (c) Ebner C, Sansone R, Probst M. Quantum chemical study of the interaction of nitrate anion with water. Int J Quantum Chem. 1998;70:877–886.
  • (a) Waterland MR, Stockwell D, Kelley AM. Symmetry breaking effects in NO3−: Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water complexes. J Chem Phys. 2001;114:6249–6258; (b) Wang XB, Yang X, Wang L-S. Photo detachment and theoretical study of free and water-solvated nitrate anions, NO3- (H2O)n (n = 0–6). J Chem Phys. 2002;116:561–570.
  • Wahab A, Mahiuddin S, Hefter G, et al. Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman Spectra, and Molecular Dynamics Simulations of Aqueous Solutions of Mg(OAc)2, and Mg(NO3)2: Hofmeister effects and ion pair formation. J Phys Chem B. 2005;109:24108–24120.
  • Ohtaki H, Radnai T. Structure and dynamics of hydrated ions. Chem Rev 1993;93:1157–1204.
  • Nakahara M, Emi K. Effect of dielectric friction on the perpendicular reorientation of the nitrate ion in water and organic solvents. J Chem Phys. 1993;99:5418–5425.
  • Ikushima Y, Saito N, Arai M. Raman spectral studies of aqueous zinc nitrate solution at high temperatures and at a high pressure of 30 MPa. J Phys Chem B. 1998;102:3029–3035.
  • Laaksonen A, Kovacs H. Silver nitrate in aqueous solution and as molten salt: A molecular dynamics simulation and NMR relaxation study. Can J Chem. 1994;72:2278–2285.
  • Kataoka Y. Molecular dynamics simulation of aqueous MNO3 (M=Li, Na, K. Rb, and Cs) solutions. Bull Chem Soc Jpn. 1993;66:2478–2491.
  • Guilbaud P, Wipff G. Hydration of uranyl (UO22+) cation and its nitrate ion and 18-crown-6 adducts studied by molecular dynamics simulations. J Phys Chem. 1993;97:5685–5692.
  • Kato T, Hayashi S, Oobatake M, et al. Cation dependence of the ionic dynamics in computer simulated molten nitrates. J Chem Phys. 1993;99:3966–3975.
  • Ebner C, Sansone R, Hengrasmee S, et al. Molecular dynamics study of an aqueous potassium nitrate solution. Int J Quantum Chem. 1999;75:805–814.
  • Dang LX, Chang T-M, Roeselova M, et al. On NO3- - H2O interactions in aqueous solutions and at interfaces. J Chem Phys. 2006;124:066101-1–066101-3.
  • Ghaffari A, Rahbar-Kelishami A. MD simulation and evaluation of the self-diffusion coefficients in aqueous NaCl solutions at different temperatures and concentrations. J Mol Liq. 2013;187:238–245.
  • Chialvo AA, Simonson JM. The structure of CaCl2 aqueous solutions over a wide range of concentration. interpretation of diffraction experiments via molecular simulation. J Chem Phys. 2003;119:8052–8061.
  • Uchida H, Matsuoka M. Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration. Fluid Phase Equilib. 2004;219:49–54.
  • Smith WH. Air pollution and forest damage. Chem Eng News. 1991;69:30–43.
  • Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 2002;159:567–584.
  • Salvador P, Curtis JE, Tobias DJ, et al. Polarizability of the nitrate anion and its solvation at the air/water interface. Phys Chem Chem Phys. 2003;5:3752–3757.
  • (a) Dominé F, Shepson PB. Air-snow interactions and atmospheric chemistry. Science. 2002;297:1506–1510; (b) Dubowski Y, Colussi AJ, Boxe C, et al. Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications. J Phys Chem A. 2001;105:4928–4932; (c) Minofar B, Vácha R, Wahab A, et al. Propensity for the air/water interface and ion pairing in magnesium acetate vs magnesium nitrate solutions: Molecular dynamics simulations and surface tension measurements. J Phys Chem B. 2006;110:15939–15944.
  • (a) Bickmore BR, Nagy KL, Young JS, et al. Nitrate-cancrinite precipitation on quartz sand in simulated hanford tank solutions. Environ Sci Technol. 2001;35:4481–4486; (b) Chambliss CK, Haverlock TJ, Bonnesen PV, et al. Selective separation of hydroxide from alkaline nuclear tank waste by liquid-liquid extraction with weak hydroxyl acids. Environ Sci Technol. 2002;36:1861–1867.
  • (a) Finlayson-Pitts B, Pitts, Jr. J. Chemistry of the Upper and Lower Atmosphere. San Diego (CA): Academic Press; (b) Wayne RP. Chemistry of atmospheres. Oxford: Oxford University Press; 2000.
  • Wingfield P. Protein precipitation using ammonium sulfate. Science. 1998;13:A.3F.1–A.3F.8.
  • Mortensen DN, Williams ER. Investigating protein folding and unfolding in electrospray nanodrops upon rapid mixing using theta-glass emitters. Anal Chem. 2015;87:1281–1287.
  • Späth A, König B. Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J Org Chem. 2010;6:1–111.
  • Widiastuti N, Wu H, Ang HM, et al. Removal of ammonium from greywater using natural zeolite. Desalination. 2011;277:15–23.
  • Hasan HA, Abdullah SRS, Kamarudin SK, et al. Simultaneous and Mn2+ removal from drinking water using a biological aerated filter system: effects of different aeration rates. Sep Purif Technol. 2013;118:547–556.
  • Huang J, Kankanamge NR, Chow C, et al. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Int J Environ Sci. 2018;63:174–197.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4:  algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91:6269–6271.
  • Jorgensen WL, Gao J. Monte carlo simulations of the hydration of ammonium and carboxylate ions. J Phys Chem. 1986;90:2174–2182.
  • González Lebrero MC, Bikiel DE, Elola MD, et al. Solvent-induced symmetry breaking of nitrate ion in aqueous clusters: A quantum-classical simulation study. J Chem Phys. 2002;117:2718–2725.
  • Xie WJ, Zhang Z, Gao YQ. Ion pairing in alkali nitrate electrolyte solutions. J Phys Chem B. 2016;120:2343–2351.
  • Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992;64:1045–1097.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J Chem Phys. 1993;98:10089–10092.
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–341.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101–014107.
  • Berendsen HJC, Postma JPM, DiNola A, et al. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81:3684–3690.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: A New molecular dynamics method. J Appl Phys. 1981;52:7182–7190.
  • van Gunsteren WF, Berendsen HJC. A leap-frog algorithm for stochastic dynamics. Mol Simul. 1988;1:173–185.
  • Campbell AN, Grey AP, Kartzmark EM. Can J Chem. 1953;31:617–629.
  • CPMD. Max Planck Institute für Festkörperforschung, Stuttgart, 2001.
  • Kohn W, Sham LJ. Self-Consistent equations including exchange and correlation effects. Phys Rev A. 1965;140:A1133–A1138.
  • Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials. Phys Rev B. 1996;54:1703–1710.
  • Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1993;43:1991–2006.
  • Sprik M, Hutter J, Parrinello M. Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient corrected density functionals. J Chem Phys. 1996;105:1142–1152.
  • Nosé J. A unified formulation of the constant temperature molecular dynamics methods. Chem Phys. 1984;81:511–519.
  • Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • Li J-L, Car R, Tang C, et al. Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water. PNAS. 2007;104(8):2626–2630.
  • Bouazizi S, Nasr S. Concentration effects on aqueous lithium chloride solutions. molecular dynamics simulations and x-ray scattering studies. J Mol Liq. 2014;197:77–83.
  • Keshri S, Tembe BL. Structural and dynamical properties of alkaline earth metal halides in supercritical water: effect of Ion size and concentration. J Phys Chem B. 2017;121:10543–10555.
  • Keshri S, Patil UN. Concentrated brines in aqueous methanolic solutions in supercritical conditions: effect of concentration and composition from molecular dynamics simulations. Fluid Phase Equilib. 2021;536:112978.
  • Nitzan A. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems. Oxford; New York: Oxford University Press; 2013.
  • Ansell S, Barnes AC, Mason PE, et al. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions. Biophys Chem. 2006;124:171–179.
  • Calero C, Faraudo J, Aguilella-Arzo M. Molecular dynamics simulations of concentrated aqueous electrolyte solutions. Mol Simul. 2011;37:123–134.
  • Chandran A, Prakash K, Senapati S. Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study. Chem Phys. 2010;374:46–54.
  • Laudernet Y, Cartailler T, Turq P, et al. A microscopic description of concentrated potassium fluoride aqueous solutions by molecular dynamics simulation. J Phys Chem B. 2003;107:2354–2361.
  • Chang T-M, Dang LX. On rotational dynamics of an NH4+ ion in water. J Chem Phys. 2003;118:8813–8820.
  • Bankura A, Chandra A. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. J Chem Phys. 2012;136:114509-1–114509-13.
  • Narten AH. Diffraction pattern and structure of aqueous ammonium halide solutions. J Phys Chem. 1970;74:765–768.
  • Yadav S, Choudhary A, Chandra A. A first-principles molecular dynamics study of the solvation shell structure, vibrational spectra, polarity, and dynamics around a nitrate ion in aqueous solution. J Phys Chem B. 2017;121:9032–9044.
  • Das A, Ali SM. Molecular dynamics simulation studies on structure, dynamics, and thermodynamics of uranyl nitrate solution at various acid concentrations. J Phys Chem B. 2019;123:4571–4586.
  • Megyes T, Bálint S, Peter E, et al. Solution structure of NaNO3 in water: Diffraction and molecular dynamics simulation study. J Phys Chem B. 2009;113:4054–4064.
  • Reddy DN, Mallik BS. Hydration behaviour of protic ionic pair of methyl ammonium formate: A comparative molecular dynamics simulation study with their conjugate neutral forms. Comput Theor Chem. 2020;1172:112663.
  • Richens DT. Chemistry of Aqua Ions. Chichester: Wiley; 1997.
  • Brugé F, Bernasconi M, Parrinello M. Ab initio simulation of rotational dynamics of solvated ammonium ion in water. J Am Chem Soc. 1999;121:10883–10888.
  • Ekimova M, Quevedo W, Szyc Ł, et al. Aqueous solvation of ammonia and ammonium: probing hydrogen bond motifs with FT-IR and soft X-ray spectroscopy. J Am Chem Soc. 2017;139:12773–12783.
  • Bruge F, Bernasconi M, Parrinello M. Density-functional study of hydration of ammonium in water clusters. J Chem Phys. 1999;110:4734–4736.
  • Chialvo AA, Vleck L. NO3− coordination in aqueous solutions by15N/14N and 18O/nat O isotopic substitution: What can we learn from molecular simulation? J Phys Chem B. 2015;119:519–531.
  • Dagnall SP, Hague DN, Towl ADC. X – ray diffraction study of aqueous zinc (II) nitrate. J Chem Soc, Faraday Trans 2. 1982;78:72161–72167.
  • Chialvo AA, Simonson JM. The effect of salt concentration on the structure of water in CaCl2 aqueous solutions. J Mol Liq. 2004;112:99–105.
  • Caminiti R, Cucca P, Dandrea A. Hydration phenomena in a concentrated aqueous solution of Ce(NO3)3. X-ray Diffraction and Raman Spectroscopy. A: Phys Sci. 1983;38:533–539.
  • Mezei M, Beveridge DL. Theoretical studies of hydrogen bonding in liquid water and dilute aqueous solutions. Chem Phys. 1981;74:622–632.
  • Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature. 1996;379:55–57.
  • Mendez-Morales T, Carrete J, Cabeza O, et al. Solvation of lithium salts in protic ionic liquids: A molecular dynamics study. J Phys Chem B. 2014;118:761–770.
  • Zhou GB, Yang Z, Fu FJ, et al. Molecular-Level understanding of solvation structures and vibrational spectra of an ethylammonium nitrate ionic liquid around single-walled carbon nanotubes. Ind Eng Chem Res. 2015;54:8166–8174.
  • Nag A, Chakraborty D, Chandra A. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions. J Chem Sci. 2008;120:71–77.
  • Chandra A. Effects of Ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions. Phys Rev Lett. 2000;85:768–771.
  • Starr FW, Nielsen JK, Stanley HE. Fast and slow dynamics of hydrogen bonds in liquid water. Phys Rev Lett. 1999;82:2294–2297.
  • Starr FW, Nielsen JK, Stanley HE. Hydrogen-bond dynamics for the extended simple point-charge model of water. Phy Rev E. 2000;62:579–587.
  • Antipova ML, Petrenko VE. Hydrogen bond lifetime for water in classic and quantum molecular dynamics. Russian J Phys Chem A. 2013;87:1170–1174.
  • Rapaport DC. Hydrogen bonds in water Network organization and lifetimes. Mol Phys. 1983;50:1151–1162.
  • Voloshin VP, Naberukhin YI. Hydrogen bond lifetime distributions in computer-simulated water. J Structural Chem. 2009;50:78–89.
  • Sahu P, Ali SM. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements. J Chem Phys. 2015;143:184503-1–184503-14.
  • Huang Y, Zhou G, Li Y, et al. Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: the role of hydrogen bond. Chem Phys. 2016;472:105–111.
  • Fajans K, Johnson O. Apparent volumes of individual ions in aqueous solution. J Am Chem Soc. 1942;64:668–678.
  • Frank HS, Robinson AL. The entropy of dilution of strong electrolytes in aqueous solutions. J Chem Phys. 1940;8:933–938.
  • Kaminsky M. Ion-solvent interaction and the viscosity of strong-electrolyte solutions. Discuss Faraday Soc. 1957;24:171–179.
  • Hindman JC. Nuclear magnetic resonance effects in aqueous solutions of 1-1 electrolytes. J Chem Phys. 1962;36:1000–1016.
  • Vollmar PM. Ionic interactions in aqueous solution: a Raman spectral study. J Chem Phys. 1963;39:2236–2248.
  • Hayes R, Imberti S, Warr GG, et al. The nature of hydrogen bonding in protic ionic liquid. Angew Chem Int Ed. 2013;52(17):4623–4627.
  • Kameda Y, Saitoh H, Uemura O. The hydration structure of NO3- in concentrated aqueous sodium nitrate solutions. Bull Chem Soc Jpn. 1993;66:1919–1923.
  • Wahab A, Mahiuddin S. Electrical conductivity, speeds of sound, and viscosity of aqueous ammonium nitrate solutions. Can J Chem. 2001;2011(79):1207–1212.
  • Wishaw BF, Stokes RH. The diffusion coefficients and conductances of some concentrated electrolyte solutions at 25. J Am Chem Soc. 1954;76:2065–2071.
  • Hawlicka E, Swiatla-Wojcik D. MD simulation studies of selective solvation in methanol−water mixtures:  an effect of the charge density of a solute. J Phys Chem A. 2002;106:1336–1345.
  • Hawlicka E, Swiatla-Wojcik D. Aggregation of ions in methanol–water solutions of sodium halides. J Chem Phys. 2003;119:2206–2213.
  • Patil UN, Tembe BL. Solvation structures of Na+ Cl- ion pair in DMF-water and DMF-methanol mixtures. Mol Simul. 2020;42:1193–1201.
  • Keshri S, Sarkar A, Tembe BL. Molecular dynamics simulation of Na+- Cl− ion-pair in water-methanol mixtures under supercritical and ambient conditions. J Phys Chem B. 2015;119:15471–15484.
  • Sarkar A, Dixit MK, Tembe BL. Solvation structures of lithium halides in methanol-water mixtures. Chem Phys. 2015;447:76–85.
  • Dane LX. Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F-ions in polarizable water. J Chem Phys. 1992;96:6970–6977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.