187
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

First-principles calculations to investigate structural, mechanical, electronic, optical, and thermoelectric properties of novel cubic double Perovskites X2AgBiBr6 (X=Li, Na, K, Rb, Cs) for optoelectronic devices

, , , , , , & show all
Pages 1561-1572 | Received 17 May 2023, Accepted 17 Aug 2023, Published online: 29 Aug 2023

References

  • Pistor P, Meyns M, Guc M, et al. Advanced Raman spectroscopy of Cs2AgBiBr6 double perovskites and identification of Cs3Bi2Br9 secondary phases. Scr Mater. 2020;184:24–29. doi:10.1016/j.scriptamat.2020.03.040
  • Herz LM. Charge-Carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2017;2:1539–1548. doi:10.1021/acsenergylett.7b00276
  • Brittman S, Adhyaksa GWP, Garnett EC. The expanding world of hybrid perovskites: materials properties and emerging applications. MRS Commun. 2015;5:7–26. doi:10.1557/mrc.2015.6
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–6051. doi:10.1021/ja809598r
  • Andreani LC, Bozzola A, Kowalczewski P, et al. Silicon solar cells: toward the efficiency limits. Adv Phys X. 2019;4:1548305. doi:10.1080/23746149.2018.1548305
  • M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci. 2016;9:1989–1997. doi:10.1039/C5EE03874J
  • Sun Q, Chen H, Yin W-J. Do chalcogenide double perovskites work as solar cell absorbers: a first-principles study. Chem Mater. 2019;31:244–250. doi:10.1021/acs.chemmater.8b04320
  • Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science. 2018: 361. doi:10.1126/science.aat8235
  • Correa-Baena J-P, Saliba M, Buonassisi T, et al. Promises and challenges of perovskite solar cells. Science. 2017;358:739–744. doi:10.1126/science.aam6323
  • Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today. 2015;18:65–72. doi:10.1016/j.mattod.2014.07.007
  • Slavney AH, Hu T, Lindenberg AM, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J Am Chem Soc. 2016;138:2138–2141. doi:10.1021/jacs.5b13294
  • Chen H, Zhang C-R, Liu Z-J, et al. Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Mater Sci Semicond Process. 2021;123:105541. doi:10.1016/j.mssp.2020.105541.
  • Wang N, Zhan L, Li S, et al. Enhancement of intra- and inter-molecular π-conjugated effects for a non-fullerene acceptor to achieve high-efficiency organic solar cells with an extended photoresponse range and optimized morphology. Mater Chem Front. 2018;2:2006–2012. doi:10.1039/C8QM00318A
  • Gao W, Ran C, Xi J, et al. High-quality Cs 2 AgBiBr 6 double Perovskite Film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency. ChemPhysChem. 2018;19:1696–1700. doi:10.1002/cphc.201800346
  • Dong L, Sun S, Deng Z, et al. Elastic properties and thermal expansion of lead-free halide double perovskite Cs2AgBiBr6. Comput Mater Sci. 2018;141:49–58. doi:10.1016/j.commatsci.2017.09.014
  • Zerarga F, Allali D, Bouhemadou A, et al. Ab initio study of the pressure dependence of mechanical and thermodynamic properties of GeB2O4 (B = Mg, Zn and Cd) spinel crystals. Comput Condens Matter. 2022;32:e00705. doi:10.1016/j.cocom.2022.e00705
  • Radja K, Farah BL, Ibrahim A, et al. Investigation of structural, magneto-electronic, elastic, mechanical and thermoelectric properties of novel lead-free halide double perovskite Cs2AgFeCl6: First-principles calcuations. J Phys Chem Solids. 2022;167:110795. doi:10.1016/j.jpcs.2022.110795
  • Su J, Mou T, Wen J, et al. First-principles study on the structure, electronic, and optical properties of Cs 2 AgBiBr 6-x Cl x mixed-halide double perovskites. J Phys Chem C. 2020;124:5371–5377. doi:10.1021/acs.jpcc.9b11827
  • McClure ET, Ball MR, Windl W, et al. Cs 2 AgBiX 6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem Mater. 2016;28:1348–1354. doi:10.1021/acs.chemmater.5b04231
  • Soni Y, Rani U, Shukla A, et al. Transition metal-based halides double Cs2ZSbX6 (Z = Ag, Cu, and X = Cl, Br, I) perovskites: a mechanically stable and highly absorptive materials for photovoltaic devices. J Solid State Chem. 2022;314:123420. doi:10.1016/j.jssc.2022.123420
  • Wei F, Deng Z, Sun S, et al. Enhanced visible light absorption for lead-free double perovskite Cs 2 AgSbBr 6. Chem Commun. 2019;55:3721–3724. doi:10.1039/C9CC01134J
  • Tran F, Blaha P, Betzinger M, et al. Comparison between exact and semilocal exchange potentials: an all-electron study for solids. Phys Rev B Condens Matter Mater Phys. 2015;91. doi:10.1103/PhysRevB.91.165121
  • Blaha P, Schwarz K, Tran F, et al. WIEN2k: an APW+lo program for calculating the properties of solids. J Chem Phys. 2020;152:074101. doi:10.1063/1.5143061
  • Alnujaim S, Bouhemadou A, Chegaar M, et al. Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur Phys J B. 2022;95:114. doi:10.1140/epjb/s10051-022-00381-2
  • Ferjani H, Ben Smida Y, Al-Douri Y. First-Principles calculations to investigate the effect of Van der Waals interactions on the crystal and electronic structures of Tin-based 0D hybrid perovskites. Inorganics (Basel). 2022;10:155. doi:10.3390/inorganics10100155
  • Odeh YM, Azar SM, Al-Reyahi AY, et al. Tuning the bandgap of cubic and orthorhombic BaZrS3 by substituting sulfur with selenium. AIP Adv. 2023;13; doi:10.1063/5.0156875
  • Essaoud SS, Azar SM, Mousa AA, et al. DFT-based investigation of electronic-structure, magnetic and thermoelectric properties of Dy2 CoMnO 6 double perovskite. Phys Scr. 2023;98:075930. doi:10.1088/1402-4896/acdd2c
  • Perdew JP. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc, AIP, 2001, 1–20. doi:10.1063/1.1390175
  • Schwarz K. DFT calculations of solids with LAPW and WIEN2k. J Solid State Chem. 2003;176:319–328. doi:10.1016/S0022-4596(03)00213-5
  • C. Hébert, Practical aspects of running the WIEN2k code for electron spectroscopy. Micron. 2007;38:12–28. doi:10.1016/j.micron.2006.03.010
  • Koller D, Blaha P, Tran F. Hybrid functionals for solids with an optimized Hartree–Fock mixing parameter. J Phys: Condens Matter. 2013;25:435503. doi:10.1088/0953-8984/25/43/435503
  • Tran F, Blaha P. Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set. Phys Rev B. 2011;83:235118. doi:10.1103/PhysRevB.83.235118
  • Becke AD, Johnson ER. A simple effective potential for exchange. J Chem Phys. 2006;124; doi:10.1063/1.2213970
  • Hassan A, Ismail M, Reshak AH, et al. Effect of heteroatoms on structural, electronic and spectroscopic properties of polyfuran, polythiophene and polypyrrole: a hybrid DFT approach. J Mol Struct. 2023;1274:134484. doi:10.1016/j.molstruc.2022.134484
  • Husain M, Rahman N, Reshak AH, et al. Insight into the physical properties of the inter-metallic titanium-based binary compounds. Eur Phys J Plus. 2021;136:624. doi:10.1140/epjp/s13360-021-01590-x
  • Ullah R, Reshak AH, Ali MA, et al. Pressure-dependent elasto-mechanical stability and thermoelectric properties of MYbF3 (M = Rb, Cs) materials for renewable energy. Int J Energy Res. 2021;45:8711–8723. doi:10.1002/er.6408
  • Hoat DM, Amirian S, Alborznia H, et al. Strain effect on the electronic and optical properties of 2D Tetrahexcarbon: a DFT-based study. Indian J Phys. 2021;95:2365–2373. doi:10.1007/s12648-020-01913-1
  • S. Tabassam, A.H. Reshak, G. Murtaza, S. Muhammad, A. Laref, M. Yousaf, A.M. Al Bakri, J. Bila, Heusler alloys under the effect of pressure and strain. J Mol Graph Model. 2021;104:107841. doi:10.1016/j.jmgm.2021.107841
  • Berarma K, Essaoud SS, Mousa AA, et al. Opto-electronic, thermodynamic and charge carriers transport properties of Ta2FeNiSn2and Nb2FeNiSn2double half-Heusler alloys. Semicond Sci Technol. 2022;37; doi:10.1088/1361-6641/ac612b
  • Gherriche A, Bouhemadou A, Al-Douri Y, et al. Ab initio exploration of the structural, elastic, electronic and optical properties of a new layered perovskite-type oxyfluoride: CsSrNb2O6F. Mater Sci Semicond Process. 2021;131:105890. doi:10.1016/j.mssp.2021.105890
  • Alnujaim S, Bouhemadou A, Chegaar M, et al. Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur Phys J B. 2022;95:114. doi:10.1140/epjb/s10051-022-00381-2
  • Berarma K, Essaoud SS, Mousa AA, et al. Opto-electronic, thermodynamic and charge carriers transport properties of Ta 2 FeNiSn 2 and Nb 2 FeNiSn 2 double half-Heusler alloys. Semicond Sci Technol. 2022;37:055013. doi:10.1088/1361-6641/ac612b
  • Al-Reyahi AY, Al Azar S, Mousa AA, et al. Investigation of electronic, optical, and thermoelectric properties of half-metallic spinel X2NO4 (X = B, Al): first-principles calculations. Comput Condens Matter. 2023;34:e00787. doi:10.1016/j.cocom.2023.e00787
  • Souadia Z, Bouhemadou A, Khenata R, et al. Structural, elastic and lattice dynamical properties of the alkali metal tellurides: first-principles study. Phys B Condens Matter. 2017;521:204–214. doi:10.1016/j.physb.2017.07.004
  • Yang X, Wang W, Ran R, et al. Recent advances in Cs 2 AgBiBr 6 -based halide double perovskites as lead-free and inorganic light absorbers for perovskite solar cells. Energy Fuels. 2020;34:10513–10528. doi:10.1021/acs.energyfuels.0c02236
  • Waqas Iqbal M, Manzoor M, Noor NA, et al. Tuning of the electronic bandgap of lead-free double perovskites K2AgBiX6 (X = Cl, Br) for solar cells applications and their thermoelectric characteristics. Solar Energy. 2022;239:234–241. doi:10.1016/j.solener.2022.05.018
  • Saal JE, Kirklin S, Aykol M, et al. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM. 2013;65:1501–1509. doi:10.1007/s11837-013-0755-4
  • Ghebouli MA, Chihi T, Ghebouli B, et al. Study of the structural, elastic, electronic and optical properties of lead free halide double perovskites Cs 2 AgBiX 6 ( X  =  Br, Cl). Chin J Phys. 2018;56:323–330. doi:10.1016/j.cjph.2018.01.004
  • Wang J, Yip S, Phillpot SR, et al. Crystal instabilities at finite strain. Phys Rev Lett. 1993;71:4182–4185. doi:10.1103/PhysRevLett.71.4182
  • Dong L, Sun S, Deng Z, et al. Elastic properties and thermal expansion of lead-free halide double perovskite Cs2AgBiBr6. Comput Mater Sci. 2018;141:49–58. doi:10.1016/j.commatsci.2017.09.014
  • Pettifor DG. Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol. 1992;8:345–349. doi:10.1179/mst.1992.8.4.345
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc. Sec A. 1952;65:349–354. doi:10.1088/0370-1298/65/5/307
  • Hadi MA. Superconducting phases in a remarkable class of metallic ceramics. J Phys Chem Solids. 2020;138:109275. doi:10.1016/j.jpcs.2019.109275
  • Arikan N, DikiCi Yildiz G, Yildiz YG, et al. Electronic, elastic, vibrational and thermodynamic properties of HfIrX (X = As, Sb and Bi) compounds: insights from DFT-based computer simulation. J Electron Mater. 2020;49:3052–3062. doi:10.1007/s11664-020-08029-6
  • Wang J, Zhou Y. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti,V,Nb, and Cr) ceramics. Phys Rev B. 2004;69:214111. doi:10.1103/PhysRevB.69.214111
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci. 1954;45:823–843. doi:10.1080/14786440808520496
  • Al-Qaisi S, Rai DP, Alshahrani T, et al. Structural, elastic, thermodynamic, electronic, optical and thermoelectric properties of MgLu2X4 (X = S, Se) spinel compounds from ab-initio calculations. Mater Sci Semicond Process. 2021;128:105766. doi:10.1016/j.mssp.2021.105766
  • Wang H, Chen Y, Kaneta Y, et al. First-principles study on effective doping to improve the optical properties in spinel nitrides. J Alloys Compd. 2010;491:550–559. doi:10.1016/j.jallcom.2009.10.267
  • Carr CW, Radousky HB, Rubenchik AM, et al. Localized dynamics during laser-induced damage in optical materials. Phys Rev Lett. 2004;92:087401. doi:10.1103/PhysRevLett.92.087401
  • Muhammad N, Khan A, Haidar Khan S, et al. Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO 2. Phys B Condens Matter. 2017;521:62–68. doi:10.1016/j.physb.2017.06.055
  • Ramachandran T, Rajeevan NE, Pradyumnan PP. Enhanced thermoelectric properties of BiCoO3 by Nickel substitution. Mater Sci Appl. 2013;04:816–821. doi:10.4236/msa.2013.412104
  • Al-Reyahi AY, Al Azar S, Mousa AA, et al. Investigation of electronic, optical, and thermoelectric properties of half-metallic spinel X2NO4 (X = B, Al): first-principles calculations. Comput Condens Matter. 2023;34:e00787. doi:10.1016/j.cocom.2023.e00787
  • Yaseen M, Mahmood Q, Ramay SM, et al. The first-principle study of the electronic structure, ferromagnetic and thermoelectric properties of spinel alloy FeAl2O4 using mBJ functional approach. J Supercond Nov Magn. 2018;31:1435–1441. doi:10.1007/s10948-017-4337-5
  • Hamioud F, Mubarak AA. The mechanical, optoelectronic and thermoelectric properties of NiYSn (Y = Zr and Hf) alloys. Int J Mod Phys B. 2017;31; doi:10.1142/S0217979217501703
  • Majid F, Nasir MT, Algrafy E, et al. Exploration of magnesium based MgX2O4 (X = Rh, Bi) spinels for thermoelectric applications using density functional theory (DFT). J Mater Res Technol. 2020;9:6135–6142. doi:10.1016/j.jmrt.2020.04.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.