75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Simulations of the thermodynamic properties of the helium fluid from the state-of-the-art ab initio potentials and their uncertainty estimation

, , &
Pages 104-116 | Received 06 Feb 2023, Accepted 19 Oct 2023, Published online: 10 Nov 2023

References

  • Rahman A. Correlations in the motion of atoms in liquid argon. Phys Rev. 1964;136:A405–A411. doi: 10.1103/PhysRev.136.A405
  • Sadus RJ. Molecular simulation of fluids: theory, algorithms and object-orientation. New York: Elsevier Science; 1999.
  • Claudet S, Gayet P, Lebrun P, et al. Advances in Cryogenic Engineering. Boston, MA: Springer US; 2000. p. 1301–1308.
  • Deschildre C, Barraud A, Bonnay P, et al. Dynamic simulation of an helium refrigerator. AIP Conf Proc. 2008;985:475–482. doi: 10.1063/1.2908587
  • Lide DR. CRC handbook of chemistry and physics. 86th ed., Boca Raton (FL): CRC press; 2005.
  • Eggenberger R, Huber H, Welker M. Neon in condensed phase: quantitative calculations of structural, thermodynamic and transport properties from pure theory. Chem Phys. 1994;187:317–327. doi: 10.1016/0301-0104(94)89014-5
  • Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–10035. doi: 10.1021/ja00051a040
  • Tahery R, Modarress H. Lennard-Jones energy parameter for pure fluids from scaled particle theory. Iran J Chem Chem Eng. 2007;26:1–8. Publisher: Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR.
  • Aziz RA, Slaman MJ. An examination of ab initio results for the helium potential energy curve. J Chem Phys. 1991;94:8047–8053. doi: 10.1063/1.460139Publisher: American Institute of Physics.
  • Hellmann R, Bich E, Vogel E. Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium-helium interatomic potential. Mol Phys. 2007;105:3013–3023. doi: 10.1080/00268970701730096
  • Bich E, Hellmann R, Vogel E. Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. II. Thermophysical standard values for low-density helium. Mol Phys. 2007;105:3035–3049. doi: 10.1080/00268970701744584
  • Przybytek M, Cencek W, Jeziorski B, et al. Pair potential with submillikelvin uncertainties and nonadiabatic treatment of the halo state of the helium dimer. Phys Rev Lett. 2017;119:123401. doi: 10.1103/PhysRevLett.119.123401
  • Czachorowski P, Przybytek M, Lesiuk M, et al. Second virial coefficients for 4He and 3He from an accurate relativistic interaction potential. Phys Rev A. 2020;102:042810. doi: 10.1103/PhysRevA.102.042810
  • Clementi E, Reddaway SF, Hoare CA, et al. Global scientific and engineering simulations on scalar, vector and parallel LCAP-type supercomputers. Philos Trans Royal Soc Lond A Math Phys Sci. 1988;326:445–470. doi: 10.1098/rsta.1988.0097
  • Eggenberger R, Gerber S, Huber H, et al. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range. Chem Phys. 1992;164:321–329. doi: 10.1016/0301-0104(92)87071-G
  • Ermakova E, Solca J, Huber H, et al. Many-body and quantum effects in the radial distribution function of liquid neon and argon. Chem Phys Lett. 1995;246:204–208. doi: 10.1016/0009-2614(95)01108-L
  • Ermakova E, Solca J, Steinebrunner G, et al. Ab initio calculation of a three-body potential to be applied in simulations of fluid neon. Chem Eur J. 1998;4:377–382. doi: 10.1002/(ISSN)1521-3765
  • Messerly RA, Gokul N, Schultz AJ, et al. Molecular calculation of the critical parameters of classical helium. J Chem Eng Data. 2020;65:1028–1037. doi: 10.1021/acs.jced.9b00443
  • Deiters UK, Sadus RJ. Ab initio interatomic potentials and the classical molecular simulation prediction of the thermophysical properties of helium. J Phys Chem B. 2020;124:2268–2276. doi: 10.1021/acs.jpcb.9b11108Publisher: American Chemical Society.
  • Imaoka H, Kinugawa K. Transport coefficients of normal liquid helium-4 calculated by path integral centroid molecular dynamics simulation. Chem Phys Lett. 2017;671:174–181. doi: 10.1016/j.cplett.2017.01.034
  • Sesé LM. A quantum monte carlo study of liquid Lennard–Jones methane, path-integral and effective potentials. Mol Phys. 1992;76:1335–1346. doi: 10.1080/00268979200102121
  • Vlasiuk M, Frascoli F, Sadus RJ. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon. J Chem Phys. 2016;145:104501. doi: 10.1063/1.4961682
  • Goharshadi EK, Abbaspour M, Kashani H, et al. Quantum computation of the properties of helium using two-body and three-body intermolecular potentials: a molecular dynamics study. Theor Chem Acc. 2008;119:355–368. doi: 10.1007/s00214-007-0393-4
  • Liu J, Lu WQ. Molecular dynamics simulation of the thermophysical properties of quantum liquid helium using the Feynman–Hibbs potential. AIP Conf Proc. 2010;1207:901–905. doi: 10.1063/1.3366483
  • Hurly JJ, Moldover MR. Ab initio values of the thermophysical properties of helium as standards. J Res Natl Inst Stand Technol. 2000;105(5):667–688. doi: 10.6028/jres
  • Luo Q-Y, Song B. Accurate internal energy of argon fluid from a state-of-the-art ab initio potential with uncertainty estimations. J Mol Liq. 2019;288:110980. doi: 10.1016/j.molliq.2019.110980
  • Luo QY, Song B. Assessment of the ‘methodological’ uncertainty of molecular dynamics simulations based on an ultra-accurate potential of helium-4 dimers. Results Phys. 2019;15:102679. doi: 10.1016/j.rinp.2019.102679
  • Lemmon E, Bell IH, Huber M, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties REFPROP, version 10.0. National Institute of Standards and Technology. Standard Reference Data Program, Gaithersburg; 2018.
  • Wigner E. On the quantum correction for thermodynamic equilibrium. Phys Rev. 1932;40(5):749–759. doi: 10.1103/PhysRev.40.749
  • Cencek W, Patkowski K, Szalewicz K. Full-configuration-interaction calculation of three-body nonadditive contribution to helium interaction potential. J Chem Phys. 2009;131:064105. doi: 10.1063/1.3204319
  • Lustig R. Statistical thermodynamics in the classical molecular dynamics ensemble. I. Fundamentals. J Chem Phys. 1994;100:3048–3059. doi: 10.1063/1.466446Publisher: American Institute of Physics.
  • Meier K, Kabelac S. Pressure derivatives in the classical molecular-dynamics ensemble. J Chem Phys. 2006;124:064104. doi: 10.1063/1.2162889
  • Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford University Press; 2017.
  • Verlet L. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys Rev. 1967;159(1):98–103. doi: 10.1103/PhysRev.159.98
  • Schultz AJ, Kofke DA. Virial coefficients of helium-4 from ab initio-based molecular models. J Chem Eng Data. 2019;64:3742–3754. doi: 10.1021/acs.jced.9b00183
  • McLinden MO, Lösch-Will C. Apparatus for wide-ranging, high-accuracy fluid ( p,ρ,T) measurements based on a compact two-sinker densimeter. J Chem Thermodyn. 2007;39:507–530. doi: 10.1016/j.jct.2006.09.012
  • Moldover MR, McLinden MO. Using ab initio ‘data’ to accurately determine the fourth density virial coefficient of helium. J Chem Thermodyn. 2010;42:1193–1203. doi: 10.1016/j.jct.2010.02.015
  • Hurly JJ, Schmidt JW, Boyes SJ, et al. Virial equation of state of helium, xenon, and helium-xenon mixtures from speed-of-sound and Burnett PρT measurements. Int J Thermophys. 1997;18(3):579–634. doi: 10.1007/BF02575125

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.