164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics simulation studies on uptake of fipronil sulfone by gut microbiome and its influence on risk for cause of Parkinson’s disease

, , &
Pages 189-206 | Received 30 Aug 2023, Accepted 08 Nov 2023, Published online: 23 Nov 2023

References

  • Chapman JR, Balasubramanian D, Tam K, et al. Using quantitative spectrometry to understand the influence of genetics and nutritional perturbations on the virulence potential of Staphylococcus aureus. Mol Cell Proteomics. 2017;16:S15–S28. doi: 10.1074/mcp.O116.065581
  • Burgui S, Gil C, Solano C, et al. A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus. Front Microbiol. 2018;9:342. doi: 10.3389/fmicb.2018.00342
  • Tam K, Torres VJ. Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiol Spectr. 2019;7. doi: 10.1128/microbiolspec.GPP3-0039-2018
  • Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-Gut-brain axis. Physiol Rev 2019;99(4):1877–2013. doi: 10.1152/physrev.00018.2018
  • Knight E, Geetha T, Burnett D, et al. The role of diet and dietary patterns in Parkinson's disease. Nutrients. 2022;14(21):4472. doi: 10.3390/nu14214472
  • Villageliú D, Lyte M. Dopamine production in Enterococcus faecium: a microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One. 2018;13(11):e0207038. doi: 10.1371/journal.pone.0207038. PMID: 30485295; PMCID: PMC6261559.
  • Zhang Y, He X, Mo C, et al. Association between microbial tyrosine decarboxylase gene and levodopa responsiveness in patients with Parkinson disease. Neurology. 2022;99(22):e2443–e2453. doi: 10.1212/WNL.0000000000201204
  • Maini Rekdal V, Bess Elizabeth N, Bisanz Jordan E, et al. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019;364(6445). doi:10.1126/science.aau6323
  • Tamtaji OR, Taghizadeh M, Daneshvar KR, et al. Clinical and metabolic response to probiotic administration in people with Parkinson's disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr. 2019;38(3):1031–1035. doi:10.1016/j.clnu.2018.05.018.
  • Indrio F, Riezzo G, Raimondi F, et al. Lactobacillus reuteri accelerates gastric emptying and improves regurgitation in infants. Eur J Clin Invest. 2011;41:417–422. doi: 10.1111/j.1365-2362.2010.02425.x
  • Krygowska-Wajs A, Cheshire WP, Wszolek ZK, et al. Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism Relat D. 2009;15:692–696. doi: 10.1016/j.parkreldis.2009.04.003
  • Hardoff R, Sula M, Tamir A, Soil A, Front A, Badarna S, Honigman S, Giladi N. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord. 2001, 16, 1041–1047. [CrossRef] [PubMed]
  • Doi H, Sakakibara R, Sato M, et al. Plasma levodopa peak delay and impaired gastric emptying in Parkinson's disease. J Neurol Sci. 2012;319(1-2):86–88. doi:10.1016/j.jns.2012.05.010
  • Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50. doi: 10.1186/gb-2011-12-5-r50
  • Lozupone C, Stombaugh J, Gordon J, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550
  • Clemente JC, Ursell LK, Parfrey LW, et al. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. ISSN 0092-8674. doi: 10.1016/j.cell.2012.01.035
  • Mahmood I, Imadi SR, Shazadi K, et al. Effects of pesticides on the environment. In: Hakeem K, Akhtar M, Abdullah S, editors. Plant, soil and microbes;2016. p. 253–269. doi:10.1007/978-3-319-27455-3_13
  • Akashe Megha M, Pawade Uday V, Nikam Ashwin V, et al. Classification of Pesticides: a review. Int J Res Ayur Pharm. 2018;9(4):144–150. doi:10.7897/2277-4343
  • Surekha S. Prognosis and ameliorative possibilities against cognitive impairment. S Kadam, editor. Scieng Publications; 2022. ISBN: 978-81-955557-2-7. 67-79
  • Cao F, Soudersii CL, Perez-Rodriguez V, et al. Elucidating conserved transcriptional networks underlying pesticide exposure and Parkinson's disease: a focus on chemicals of epidemiological relevance. Front Genet. 2019;9:701. doi:10.3389/fgene.2018.00701
  • Singh NB, Sharma R, Singh S, et al. A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites. Environ Res. 2021;199:111316. doi: 10.1016/j.envres.2021.111316
  • Park JH, Park YS, Koh HC. Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to fipronil. Toxicol Lett. 2016;258:36–45. doi: 10.1016/j.toxlet.2016.06.011
  • Mahmoud YK, Ali AA, Abdelrazek HMA, et al. Neurotoxic effect of fipronil in male wistar rats: ameliorative effect of L-arginine and L-carnitine. Biology (Basel). 2021;10(7):682. doi: 10.3390/biology10070682
  • Pierluigi C, Sammelson RE, Casida JE. Phenylpyrazole Insecticide Photochemistry, Metabolism, and GABAergic Action: Ethiprole Compared with Fipronil. J Agri Food Chem. 2003;51(24):7055–7061. doi:10.1021/jf030439l
  • Brennan Amanda A, Harwood AD, You J, et al. Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations. Chemosphere. 2009;77(1):22–28. doi:10.1016/j.chemosphere.2009.06.019
  • Cravedi JP, Delous G, Zalko D, et al. Disposition of fipronil in rats. Chemosphere. 2013;93(10):2276–2283. doi:10.1016/j.chemosphere.2013.07.083
  • McMahen Rebecca L, Strynar Mark J, Dagnino S, et al. Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study. Environ Int. 2015;78:16–23. doi:10.1016/j.envint.2015.01.016
  • Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res. 2015;22(1):5–34. doi:10.1007/s11356-014-3470-y
  • Malsha K, Buttemer WA, Astheimer LB. Adverse effects of fipronil on avian reproduction and development: maternal transfer of fipronil to eggs in zebra finch Taeniopygia guttata and in ovo exposure in chickens Gallus domesticus. Ecotoxicology. 2011;20(4):653–660. doi:10.1007/s10646-011-0605-5
  • Tang J, Amin Usmani K, Ernest H, et al. In vitro metabolism of fipronil by human and rat cytochrome P450 and its interactions with testosterone and diazepam. Chemico-Biol Int. 2004;147(3):319–329. doi:10.1016/j.cbi.2004.03.002.
  • Mesnage R, Bowyer RCE, Balkhi SE, et al. Impacts of dietary exposure to pesticides on faecal microbiome metabolism in adult twins. Environ Health. 2022;21(1). doi: 10.1186/s12940-022-00860-0
  • Ramakrishnan B, Maddela NR, Megharaj M, et al. Linkages between plant rhizosphere and animal gut environments: interaction effects of pesticides with their microbiomes. Environ Adv. 2021;5:100091. doi: 10.1016/j.envadv.2021.100091
  • Syromyatnikov MY, Isuwa MM, Savinkova OV, et al. The effect of pesticides on the microbiome of animals. Agriculture. 2020;10(3):79. doi: 10.3390/agriculture10030079
  • Gama JR, Neves BC, Pereira AV. Chronic effects of dietary pesticides on the gut microbiome and neurodevelopment. Front Microbiol. 2022;13. doi: 10.3389/fmicb.2022.931440
  • PubMed - Beck J. Report from the field: pubmed central, an XML-based archive of life sciences journal articles. Proceedings of the International Symposium on XML for the Long Haul: Issues in the Long-term Preservation of XML. 6, 6; 2010. doi: 10.4242/BalisageVol6.Beck01. ISBN978-1-935958-02-4.
  • Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with PyRx. Chem Biol Meth Protocols. 2015;1263:243–250. doi: 10.1007/978-1-4939-2269-7_19
  • PyRx - Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods in molecular biology (Clifton, N.J.). 1263. 243–250; 2015. doi: 10.1007/978-1-4939-2269-7_19.
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30(10):1545–1614. doi:10.1002/jcc.v30:10
  • Monticelli L, Emppu S. 2013. p. 197–213.
  • O'Boyle NM, Michael B, Craig A. J, et al. Open Babel: An open chemical toolbox. J Cheminform. 2011;3(1):31. doi:10.1186/1758-2946-3-33
  • Oleg T, Arthur O. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.v31:2
  • Schrödinger L, DeLano W. (2020). PyMOL. Available from: http://www.pymol.org/pymol
  • LigPlot - Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–2786. doi: 10.1021/ci200227u. Epub 2011 Oct 5. PMID: 21919503.
  • Anvita M, Anoushka Chinmayi GV, Shruti R, et al. Antimicrobial activity of Geranyl acetate against cell wall synthesis proteins of P. aeruginosa and S. aureus using molecular docking and simulation. J Biomol Struct Dynam. 2023.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi: 10.1016/S0169-409X(96)00423-1
  • Ghose A, Viswanadhan V, Wendoloski J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. doi: 10.1021/cc9800071
  • Veber D, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–2623. doi: 10.1021/jm020017n
  • Muegge I, Heald S, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44(12):1841–1846. doi: 10.1021/jm015507e
  • Feixiong C, Weihua L, Zhou Y, et al. admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J Chem Inform Model. 2012;52(11):3099–3105. doi:10.1021/ci300367a
  • Longfei G, Hongbin Y, Yingchun C, et al. ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm. 2019;10(1):148–157. doi:10.1039/C8MD00472B
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236. doi: doi: 10.1021/ja9621760
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935. doi: 10.1063/1.445869
  • Shūichi N. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 2006;52(2):255–268. doi:10.1080/00268978400101201
  • Reddy SVG, Reddy KT, Kumari VV, et al. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase. J Biomol Struct Dyn. 2015;33:2695–2709. doi: 10.1080/07391102.2015.1004834
  • Basha SH, Bethapudi P, Majji Rambabu F. Anti-angiogenesis property by quercetin compound targeting VEGFR2 elucidated in a computational approach. European J Biotechnol Biosc. 2014;2:30–46.
  • Kumari R, Kumar R, Lynn A. g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J Chem Inform Model. 2014;54(7):1951–1962. doi:10.1021/ci500020m
  • Romeo A, Roberto P, Maurizio G. Experimental and in silico evaluations of the possible molecular interaction between airborne particulate matter and SARS-CoV-2. Sci Total Environ. 2023;895:165059. doi:10.1016/j.scitotenv.2023.165059
  • Oostenbrink C, Villa A, Mark AE, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem. 2004;25(13):1656–1676. doi: 10.1002/jcc.20090
  • Hess B, Kutzner C, van der Spoel D, et al. Gromacs 4:  algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447. doi: 10.1021/ct700301q
  • Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 1 July 2012;40(W1):W537–W541. doi: 10.1093/nar/gks375
  • Essmann U, et al. A smooth particle mesh Ewald method. J Chem Phy. 1995;103:8577–8593. doi: 10.1063/1.470117
  • Hess B, Bekker H, Berendsen HJC, et al. Lincs: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. 1463::AID-JCC4>3.0.CO;2-H
  • Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91(1-3):43–56. doi:10.1016/0010-4655(95)00042-E
  • Hess B, Carsten K, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput. 2008;4(3):435–447. doi:10.1021/ct700301q
  • DeLano WL. (2002). The PyMOL molecular graphics system. Available from: http://pymol.sourceforge.net
  • Rajagopal A, Adarsh V, Karan R, et al. Investigative study on the influence of physiological pH on choline TMA Lyase in P. vulgaris by molecular dynamics and simulation. Res J Biotechnol. 2023;18(2):104–111. doi: 10.25303/1802rjbt1040111
  • Xiu Y, Huan Lei. Atomic radius and charge parameter uncertainty in biomolecular solvation energy calculations. J Chem Theor Comput. 2018;14(2):759–767.
  • Huang D, Xu J, Wang J, et al. Dynamic changes in the nigrostriatal pathway in the MPTP mouse model of Parkinson's disease. Parkinsons Dis. 2017;2017:9349487.
  • Vaccari C, El Dib R, Gomaa H, et al. Paraquat and Parkinson's disease: a systematic review and meta-analysis of observational studies. J Toxicol Environ Health B Crit Rev. 2019;22(5–6):172–202. doi: 10.1080/10937404.2019.1659197
  • Utembe W, Kamng'ona AW. Gut microbiota-mediated pesticide toxicity in humans: methodological issues and challenges in the risk assessment of pesticides. Chemosphere. 2021;271:129817. doi: 10.1016/j.chemosphere.2021.129817
  • Gupta RC, Anadón A. Chapter 42 - fipronil, veterinary toxicology. 3rd ed. Academic Press; 2018.
  • Souders 2nd CL, Rushin A, Sanchez CL, et al. Mitochondrial and transcriptome responses in rat dopaminergic neuronal cells following exposure to the insecticide fipronil. Neurotoxicology. 2021;85:173–185. doi: 10.1016/j.neuro.2021.05.011
  • Gerasimavicius L, Livesey B, Marsh J. Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun. 2022;13.doi: 10.1038/s41467-022-31686-6
  • Perez M, et al. The relationship among Tyrosine Decarboxylase and Agmatine Deiminase pathways in Enterococcus faecalis. Front Microbiol. 2017;8. doi: 10.3389/fmicb.2017.02107. [cited 2022 Nov 27].
  • Nachar VR, Savka FC, McGroty SE, et al. Genomic and biochemical analysis of the Diaminopimelate and Lysine Biosynthesis pathway in Verrucomicrobium spinosum: identification and partial characterization of L,L-Diaminopimelate Aminotransferase and UDP-N-Acetylmuramoylalanyl-D-glutamyl-2,6-meso-Diaminopimelate Ligase. Front Microbiol. 2012;3. doi: 10.3389/fmicb.2012.00183
  • van Kessel SP, Frye AK, El-Gendy AO, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun. 2019;10(1):310. Published 2019 Jan 18. doi: 10.1038/s41467-019-08294-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.