87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Self-assembly of macrocyclic oligofurans to create novel organic nanotubes through π–π stacking: a computational study

, &
Pages 207-213 | Received 06 Jun 2023, Accepted 09 Nov 2023, Published online: 08 Dec 2023

References

  • Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature. 2009;459:234–238. doi:10.1038/nature08003
  • Perepichka IF, Perepichka D. Handbook of thiophene-based materials: applications in organic electronics and photonics, 2 Volumes Set. New York: Wiley.
  • Iyoda M, Yamakawa Rahman MJ. Conjugated macrocycles: concepts and applications. Angew Chem Int Ed. 2011;50:10522–10553. doi:10.1002/anie.201006198
  • Santos JMD, Jagadamma LK, Cameron J, et al. New thiophene-based conjugated macrocycles for optoelectronic applications. J Mater Chem C. 2021;9:16257–16271. doi:10.1039/D1TC02002A
  • Allangawi A, Aljar MAA, Ayub K, et al. Removal of methylene blue by using sodium alginate-based hydrogel; validation of experimental findings via DFT calculations. J Mol Graph Model. 2023;122:108468. doi:10.1016/j.jmgm.2023.108468
  • Mahmood T. Dispersion interactions with analytes at the center of graphene nanoflakes turn into electrostatic at the edge. Mater Sci Semicond Process. 2023;165:107624. doi:10.1016/j.mssp.2023.107624
  • Allangawi A, Sajid H, Ayub K, et al. High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. Comput Theor Chem. 2023;1220:113990. doi:10.1016/j.comptc.2022.113990
  • Krömer J, Rios-Carreras I, Fuhrmann G, et al. Synthesis of the first fully α-conjugated macrocyclic oligothiophenes: cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew Chem Int Ed. 2000;39:3481–3486. doi:10.1002/1521-3773(20001002)39:19<3481::AID-ANIE3481>3.0.CO;2-O
  • Zhang F, Götz G, Winkler HDF, et al. Giant cyclo[n]thiophenes with extended π conjugation. Angew Chem Int Ed. 2009;48:6632–6635. doi:10.1002/anie.200900101
  • Zhang F, Gotz G, Mena-Osteritz E, et al. Molecular and electronic structure of cyclo[10]thiophene in various oxidation states: polaron pair vs. bipolaron. Chem Sci. 2011;2:781–784. doi:10.1039/c0sc00560f
  • Zade SS, Bendikov M. Cyclic oligothiophenes: novel organic materials and models for polythiophene. A theoretical study. J Org Chem. 2006;71:2972–2981. doi:10.1021/jo0525229
  • Meotti FC, Silva DO, dos Santos ARS, et al. Thiophenes and furans derivatives: a new class of potential pharmacological agents. Environ Toxicol Pharmacol. 2003;15:37–44. doi:10.1016/j.etap.2003.08.008
  • Bielski R, Grynkiewicz G. Furan platform chemicals beyond fuels and plastics. Green Chem. 2021;23:7458–7487. doi:10.1039/D1GC02402G
  • Eid N, Ameduri B, Boutevin B. Synthesis and properties of furan derivatives for epoxy resins. ACS Sustain Chem Eng. 2021;9:8018–8031. doi:10.1021/acssuschemeng.0c09313
  • Shehzadi K, Tariq A, Zubair M, et al. Synthesis of pyridine and furan based arylated ketones through palladium catalyst with DFT study of their static and frequency dependent NLO response. Inorg Chem Commun. 2023;151:110566. doi:10.1016/j.inoche.2023.110566
  • Gidron O, Diskin-Posner Y, Bendikov M. α-Oligofurans. J Am Chem Soc. 2010;132:2148–2150. doi:10.1021/ja9093346
  • Gidron O, Bendikov M. α-Oligofurans: an emerging class of conjugated oligomers for organic electronics. Angew Chem Int Ed. 2014;53:2546–2555. doi:10.1002/anie.201308216
  • Ferron CC, Delgado MCR, Gidron O, et al. α-Oligofurans show a sizeable extent of π-conjugation as probed by Raman spectroscopy. Chem Commun. 2012;48:6732–6734. doi:10.1039/c2cc18144d
  • Gidron O, Diskin-Posner Y, Bendikov M. High charge delocalization and conjugation in oligofuran molecular wires. Chem Eur J. 2013;19:13140–13150. doi:10.1002/chem.201301293
  • Gidron O, Dadvand A, Sheynin Y, et al. Towards “green” electronic materials. α-Oligofurans as semiconductors. Chem Commun. 2011;47:1976–1978. doi:10.1039/C0CC04699J
  • Gidron O, Dadvand A, Wei-Hsin Sun E, et al. Oligofuran-containing molecules for organic electronics. J Mater Chem C. 2013;1:4358–4367. doi:10.1039/c3tc00079f
  • Gadakh S, Shimon LJW, Gidron O. Regioselective transformation of long π-conjugated backbones: from oligofurans to oligoarenes. Angew Chem Int Ed. 2017;56:13601–13605. doi:10.1002/anie.201705914
  • Dishi O, Gidron O. Macrocyclic oligofurans: a computational study. J Org Chem. 2018;83:3119–3125. doi:10.1021/acs.joc.7b03030
  • Mulay SV, Dishi O, Fang Y, et al. A macrocyclic oligofuran: synthesis, solid state structure and electronic properties. Chem Sci. 2019;10:8527–8532. doi:10.1039/C9SC03247A
  • Varni AJ, Kawakami M, Tristram-Nagle SA, et al. Design, synthesis, and properties of a six-membered oligofuran macrocycle. Org Chem Front. 2021;8:1775–1782. doi:10.1039/D1QO00084E
  • Götz G, Zhu X, Mishra A, et al. π-Conjugated [2]catenanes based on oligothiophenes and phenanthrolines: efficient synthesis and electronic properties. Chem Eur J. 2015;21:7193–7210. doi:10.1002/chem.201406039
  • Dishi O, Malakar P, Shimon LJW, et al. Ring size determines the conformation, global aromaticity and photophysical properties of macrocyclic oligofurans. Chem Eur J. 2021;27:17794–17801. doi:10.1002/chem.202103536
  • Owens FJ. Modelling boron nitride nano-structures as catalysts in fuel cells. Mol. Simul. 2017;43:724–728. doi:10.1080/08927022.2017.1301667
  • Dastorani S, Mogheiseh M, Ghasemi RH, et al. Modelling and structural investigation of a new DNA Origami based flexible bio-nano joint. Mol. Simul. 2020;46:994–1003. doi:10.1080/08927022.2020.1797019
  • Zhang Q, Zhang Y, Liu Z, et al. Designing new tetragonal Heusler materials using V, Cr, Fe and Ni doped Ti2CoGa: a first-principles study. Comput Mater Sci. 2021;188:110143. doi:10.1016/j.commatsci.2020.110143
  • Asif M, Sajid H, Qureshi S, et al. Boron-rich triphenylene COF based electrides having excellent nonlinear optical activity. Mater Sci Semicond Process. 2023;160:107468. doi:10.1016/j.mssp.2023.107468
  • Diederich F, Stang PJ, Tykwinski RR. Modern supramolecular chemistry: strategies for macrocycle synthesis. Weinheim: Wiley-VCH; 2008.
  • Iyoda M. Fully conjugated macrocycles composed of thiophenes, acetylenes, and ethylenes. Pure Appl Chem. 2010;82:831–841. doi:10.1351/PAC-CON-09-11-01
  • Venkataraman D, Lee S, Zhang J, et al. An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature. 1994;371:591–593. doi:10.1038/371591a0
  • Masoodi HR, Bagheri S, Ranjbar-Karimi R. Theoretical prediction of some novel nanotubes composed of macrocyclic structures: a DFT study. Chem Phys Lett. 2017;667:327–331. doi:10.1016/j.cplett.2016.11.016
  • Nielsen AB, Holder AJ. GaussView 5.0, user’s reference. Pittsburgh: GAUSSIAN Inc; 2009.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09 (revision A.02). Wallingford: Gaussian, Inc; 2009.
  • Khan MZH, Alrawashdeh AI, Aljohani S, et al. DFT investigation of the interaction between single-walled carbon nanotubes and fluorene-based conjugated oligomers. Phys Chem Chem Phys. 2017;19:28071–28082. doi:10.1039/C7CP04851C
  • Zhan CG, Nichols JA, Dixon DA. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A. 2003;107:4184–4195. doi:10.1021/jp0225774
  • Quiñonero D, Frontera A, Deyà PM, et al. Interaction of positively and negatively charged aromatic hydrocarbons with benzene and triphenylene: towards a model of pure organic insulators. Chem Phys Lett. 2008;460:406–410. doi:10.1016/j.cplett.2008.06.028
  • Masoodi HR, Bagheri S. Interplay between π··· π stacking and cation··· π interaction: a theoretical NMR study. J Iran Chem Soc. 2015;12:1883–1892. doi:10.1007/s13738-015-0663-3
  • Bader RFW. Atoms in molecules: a quantum theory. Oxford: Oxford University Press; 1990.
  • König FB, Schönbohm J. Update of the AIM2000-program for atoms in molecules. J Comput Chem. 2002;23:1489–1494. doi:10.1002/jcc.10085
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model. 1996;14:33–38. doi:10.1016/0263-7855(96)00018-5
  • Zhao Y, Truhlar DG. How well can new-generation density functional methods describe stacking interactions in biological systems? Phys Chem Chem Phys. 2005;7:2701–2705. doi:10.1039/b507036h
  • Rutledge LR, Wheaton CA, Wetmore SD. A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine. Phys Chem Chem Phys. 2007;9:497–509. doi:10.1039/B606388H
  • Guerra CF, van der Wijst T, Poater J, et al. Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in π-stacking and hydrogen-bonding behavior. Theor Chem Acc. 2010;125:245–252. doi:10.1007/s00214-009-0634-9
  • Torres E, DiLabio GA. A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP. J Phys Chem Lett. 2012;3:1738–1744. doi:10.1021/jz300554y
  • Tai TB, Nguyen MT. A three-dimensional aromatic B6Li8 complex as a high capacity hydrogen storage material. Chem Commun. 2013;49:913–915. doi:10.1039/C2CC38038B
  • Liu L, Hao J, Shi Y, et al. Roles of hydrogen bonds and π–π stacking in the optical detection of nitro-explosives with a luminescent metal–organic framework as the sensor. RSC Adv. 2015;5:3045–3053. doi:10.1039/C4RA12835D
  • Zhao Y, Truhlar DG. Density functionals with broad applicability in chemistry. Acc Chem Res. 2008;41:157–167. doi:10.1021/ar700111a
  • Ivanov P. Computational study (MM and DFT) on the conformations of some aromatic crown ether rotaxane macrocycles. Comput Theor Chem. 2021;1203:113266. doi:10.1016/j.comptc.2021.113266
  • Cohen AJ, Mori-Sánchez P, Yang W. Challenges for density functional theory. Chem Rev. 2012;112:289–320. doi:10.1021/cr200107z
  • Lin YS, Li GD, Mao SP, et al. Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem Theory Comput. 2013;9:263–272. doi:10.1021/ct300715s
  • Frontera A, Quiñonero D, Garau C, et al. MP2 study of cation-(π)n-π interactions (n = 1-4). J Phys Chem A. 2006;110:9307–9309. doi:10.1021/jp062176e
  • Zhikol OA, Shishkin OV, Lyssenko KA, et al. Electron density distribution in stacked benzene dimers: a new approach towards the estimation of stacking interaction energies. J Chem Phys. 2005;122:144104. doi:10.1063/1.1877092
  • Molčanov K, Kojić-Prodic B. Towards understanding π-stacking interactions between non-aromatic rings. IUCrJ. 2019;6:156–166. doi:10.1107/S2052252519000186
  • Koopmans TA. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica. 1934;1:104–113. doi:10.1016/S0031-8914(34)90011-2
  • Mulliken RS. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys. 1934;2:782–793. doi:10.1063/1.1749394
  • Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105:7512–7516. doi:10.1021/ja00364a005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.