100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermodynamic properties of fluids with Mie nm potentials and application to tune effective Mie potentials for simple real fluids

, &
Pages 236-245 | Received 20 Sep 2023, Accepted 23 Nov 2023, Published online: 15 Dec 2023

References

  • Mie G. Zur kinetischen theorie der einatomigen Körper. Ann Physik. 1903;316(8):657–697. doi:10.1002/andp.v316:8
  • Mick JR, Barhagh MS, Jackman B, et al. Optimized Mie potentials for phase equilibria: application to noble gases and their mixtures with n-alkanes. J Chem Phys. 2015;143(11):114504. doi:10.1063/1.4930138
  • Laffite T, Bessieres D, Piñeiro MM, et al. Simultaneous estimation of phase behavior and second-derivative properties using the statistical associating fluid theory with variable range approach. J Chem Phys. 2006;124(2):024509. doi:10.1063/1.2140276
  • Avendaño C, Lafitte T, Galindo A, et al. SAFT-γ force field for the simulation of molecular fluids 1: A single-site coarse grained model of carbon dioxide. J Phys Chem B. 2011;115(38):11154–11169. doi: 10.1021/jp204908d
  • Avendaño C, Lafitte T, Adjiman CS, et al. SAFT–γ force field for the simulation of molecular fluids: 2: coarse-grained models of greenhouse gases, refrigerants, and long alkanes. J Phys Chem B. 2013;117(9):2717–2733. doi:10.1021/jp306442b
  • Laffite T, Apostolakou A, Avendaño C, et al. Accurate statistical associating fluid theory for chain molecules formed from Mie segments. J Chem Phys. 2013;139(15):154504. doi:10.1063/1.4819786
  • Lobanova O, Avendaño C, Laffite T, et al. SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range. Mol Phys. 1015;113:122–1249.
  • Lyra EP, Franco LFM. Deriving force fields with a multiscale approach: from ab initio calculations to molecular-based equations of state. J Chem Phys. 2022;157(11):114107. doi:10.1063/5.0109350
  • Mejía A, Herdes C, Müller EA. Force fields for coarse-grained molecular simulations from a corresponding states correlation. Ind Eng Chem Res. 2014;53:4132–4141.
  • Polishuk I, Garrido JM. Comparison of SAFT-VR-Mie and CP-PC-SAFT in predicting phase behavior of associating systems II. Ammonia – Hydrocarbons. J Mol Liq. 2018;269:657–665. doi:10.1016/j.molliq.2018.08.098
  • Paricaud P. A general perturbation approach for equation of state development: applications to simple fluids, ab initio potentials, and fullerenes. J Chem Phys. 2006;124(15):154505. doi:10.1063/1.2181979
  • Barker JA, Henderson D. Perturbation theory and equation of state for fluids: the square-well potential. J Chem Phys. 1967;47(8):2856–2861. doi:10.1063/1.1712308
  • Barker JA, Henderson D. What is “liquid”? understanding the states of matter. Rev Mod Phys. 1976;48(4):587–671. doi:10.1103/RevModPhys.48.587
  • Guérin H. Comparison between the statistical associating fluid theory for variable range potentials (SAFT-VR) and the first-order mean spherical approximation (FMSA) equations of state for mie (α, 6) fluids. J Mol Liq. 2016;219:251–255. doi:10.1016/j.molliq.2016.03.009
  • Guérin H. First-order mean spherical approximation (FMSA) for Mie(α,β) fluids. J Mol Liq. 2018;258:196–201. doi:10.1016/j.molliq.2018.02.100
  • Tang Y. On the first-order mean spherical approximation. J Chem Phys. 2003;118(9):4140–4148. doi:10.1063/1.1541615
  • Thang Y, Lin YZ, Li YG. First-order mean spherical approximation for attractive, repulsive, and multi-Yukawa potentials. J Chem Phys. 2005;122(18):184505. doi:10.1063/1.1895720
  • Guérin H. Analytic equation of state for Mie(α,β) fluids based on an improved ross variation perturbation theory. J Mol Liq. 2012;323:115053. doi:10.1016/j.molliq.2020.115053
  • Zerón IM, Padilla LA, Gámez F, et al. Discrete perturbation theory for Mie potentials. J Mol Liq. 2017;229:125–136. doi:10.1016/j.molliq.2016.12.026
  • van Westen T, Gross J. Accurate first-order perturbation theory for fluids: uf-theory. J Chem Phys. 2021;154(4):041102. doi: 10.1063/5.0031545
  • van Westen T, Gross J. Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: uv-theory. J Chem Phys. 2021;155(24):244501. doi:10.1063/5.0073572
  • Reimer A, Van Westen T, Gross T. Physically based equation of state for Mie ν-6 fluids. J Chem Phys. 2023;158(16):164506. doi:10.1063/5.0141856
  • Zwanzig RW. High-temperature equation of state by a perturbation method. I. nonpolar fluids. J Chem Phys. 1954;22(8):1420–1426. doi:10.1063/1.1740409
  • Carnahan NF, Starling KE. Equation of state for nonattracting rigid spheres. J Chem Phys. 1969;51(2):635–636. doi:10.1063/1.1672048
  • Verlet L, Weis JJ. Equilibrium theory of simple liquids. Phys Rev A. 1972;5(2):939–952. doi: 10.1103/PhysRevA.5.939
  • Bravo Yuste S, Santos A. Radial distribution function for hard spheres. Phys Rev A. 1991;43(10):5418–5423. doi:10.1103/PhysRevA.43.5418
  • Tang Y, Lu BCY. Improved expressions for the radial distribution function of hard spheres. J Chem Phys. 1995;103(17):7463–7470. doi:10.1063/1.470317
  • Zhou S. Thermodynamic perturbation theory in fluid statistical mechanics. J Chem Phys. 2006;125(14):144518. doi:10.1063/1.2353834
  • Zhou S. Improvement on macroscopic compressibility approximation and beyond. J Chem Phys. 2006;125(14):144518. doi:10.1063/1.2353834
  • Ramana ASV, Menon SVG. Coupling-parameter expansion in thermodynamic perturbation theory. Phys Rev E. 2013;87(2):022101. doi:10.1103/PhysRevE.87.022101
  • Ramana ASV. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids. J Chem Phys. 2014;140(15):154106. doi:10.1063/1.4871115
  • Akhouri BP, Solana JR. The role of higher-order terms in perturbation approaches to the monomer and bonding contributions in a SAFT-type equation of state for square-well chain fluids. Mol Phys. 2018;116(13):1706–1721. doi:10.1080/00268976.2018.1444802
  • Akhouri BP, Solana JR. Square-well mixtures revisited: computer simulation, mixing rules and one fluid theory. Mol Simul. 2020;46(2):102–110. doi:10.1080/08927022.2019.1677903
  • Akhouri BP, Solana JR. Monte Carlo simulation and theoretical calculation of the thermodynamic properties of binary hard-core Lennard-Jones mixtures. Mol Simul. 2020;46(14):1116–1124. doi:10.1080/08927022.2020.1806264
  • Akhouri BP, Solana JR. Thermodynamic properties of hard-core attractive Yukawa fluids: single-component monomers, binary mixtures and chains. J Mol Liq. 2021;338:116493. doi:10.1016/j.molliq.2021.116493
  • Akhouri BP, Solana JR. On the choice of the effective diameter in the high temperature expansion for the Lennard–Jones fluid. Mol Phys. 2022;120(7):e2028918. doi:10.1080/00268976.2022.2028918
  • Akhouri BP, Solana JR. Thermodynamic properties of Ar, Kr and Xe from a Monte Carlo- based perturbation theory with an effective two-body Lennard–Jones potential. Physica A. 2022;608:128280. doi:10.1016/j.physa.2022.128280
  • Barker JA, Henderson D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J Chem Phys. 1967;47(11):4714–4721. doi:10.1063/1.1701689
  • Zhou S, Solana JR. Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models. J Chem Phys. 2013;138(24):244115. doi:10.1063/1.4811285
  • Stephan S, Thol M, Vrabec J, et al. Thermophysical properties of the Lennard–Jones fluid: database and data assessment. J Chem Inf Model. 2019;59(10):4248–4265. doi:10.1021/acs.jcim.9b00620
  • Thol M, Rutkai G, Köster A, et al. Equation of state for the Lennard–Jones fluid. J Phys Chem Ref Data. 2016;45(2):023101. doi:10.1063/1.4945000
  • Kolafa J, Nezbeda I. The Lennard–Jones fluid: an accurate analytic and theoretically-based equation of state. Fluid Phase Equilib. 1994;100:1–34. doi:10.1016/0378-3812(94)80001-4
  • Werth S, Stöbener K, Horscha M, et al. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Mol Phys. 2017;115(9-12):1017–1030. doi:10.1080/00268976.2016.1206218
  • Lofti A, Vrabec J, Fischer J. Vapor liquid equilibria of the Lennard-Jones fluid from NpT plus test particle method. Mol Phys. 1992;76:1319–1333. doi:10.1080/00268979200102111
  • Potoff JJ, Panagiotopoulos AZ. Surface tension of the three-dimensional Lennard–Jones fluid from histogram-reweighting Monte Carlo simulations. J Chem Phys. 2000;112(14):6411–6415. doi:10.1063/1.481204
  • Stephan S, Urschel M. Characteristic curves of the Mie fluid. J Mol Liq. 2023;383:122088. doi:10.1016/j.molliq.2023.122088
  • Smith SAM, Cripwell JT, Schwarz CE. Application of renormalization corrections to SAFT-VR Mie. Ind Eng Chem Res. 2022;61:12797–12812. doi:10.1021/acs.iecr.2c02004
  • Pohl S, Fingerhut R, Thol M, et al. Equation of state for the Mie (λr,6) fluid with a repulsive exponent from 11 to 13. J Chem Phys. 2023;158(8):084506. doi:10.1063/5.0133412
  • Walker PJ, Zhao T, Haslam AJ, et al. Ab initio development of generalized Lennard–Jones (Mie) force fields for predictions of thermodynamic properties in advanced molecular-based SAFT equations of state. J Chem Phys. 2022;156(15):154106. doi:10.1063/5.0087125
  • Sadus RJ. Two-body intermolecular potentials from second virial coefficient properties. J Chem Phys. 2019;150(2):024503. doi:10.1063/1.5080308
  • NIST Chemistry Webbook.10.18434/T4D303
  • Tchouar N, Ould-Kaddour F, Levesque D. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman–Hibbs approach. J Chem Phys. 2004;121(15):7326–7331. doi:10.1063/1.1794651
  • Chapman WG, Gubbins KE, Jackson G, et al. New reference equation of state for associating liquids. Ind Eng Chem Res. 1990;29(8):1709–1721. doi:10.1021/ie00104a021
  • Wertheim MS. Thermodynamic perturbation theory of polymerization. J Chem Phys. 1987;87(12):7323–7331. doi:10.1063/1.453326
  • Tavares FW, Chang J, Sandler SI. Equation of state for the square-well chain fluid based on the dimer version of Wertheim's perturbation theory. Mol Phys. 1995;86(6):1451–1471. doi:10.1080/00268979500102851

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.