60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantum mechanical analysis of halogen-based ionic liquid crystal [C12MIM.X(where X = Cl, Br)] molecules

, , , &
Pages 308-321 | Received 06 Jun 2023, Accepted 26 Dec 2023, Published online: 31 Jan 2024

References

  • Axenov KV, Laschat S. Thermotropic ionic liquid crystals. Materials (Basel). 2011;4(1):206–259. doi:10.3390/ma4010206
  • Carrazana-García JA, Cabaleiro-Lago EM, Rodríguez-Otero J. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation–π interaction. Phys Chem Chem Phys. 2017;19(16):10543–10553. doi:10.1039/C7CP01491K
  • Pecaut J, Fur YL, Masse R. Crystal engineering and structural investigations of the 2-amino-5-nitropyridinium salts C5H6N3O2+.HSO4− and C5H6N3O2+.H2AsO4−. Acta Crystallogr Sect B: Struct Sci. 1993;49(3):535–541. doi:10.1107/S0108768192011431
  • Cavallo G, Terraneo G, Monfredini A, et al. Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions. Angewandte Chemie. 2016;128(21):6408–6412. doi:10.1002/ange.201601278
  • Devadiga D, Ahipa TN. An up-to-date review on halogen-bonded liquid crystals. J Mol Liq. 2021;333. doi:10.1016/j.molliq.2021.115961
  • Inoue T, Dong B, Zheng LQ. Phase behavior of binary mixture of 1-dodecyl-3-methylimidazolium bromide and water revealed by differential scanning calorimetry and polarized optical microscopy. J Colloid Interface Sci. 2007;307(2):578–581. doi:10.1016/j.jcis.2006.12.063
  • Getsis A, Mudring AV. Imidazolium based ionic liquid crystals: structure, photophysical and thermal behaviour of [cnmim] Br· xH2O (n = 12, 14; x =  0, 1). Crystal Research and Technology: Journal of Experimental and Industrial Crystallography. 2008;43(11):1187–1196. doi:10.1002/crat.200800345
  • Cifelli M, Domenici V, Kharkov BB, et al. Study of translational diffusion anisotropy of ionic smectogens by NMR diffusometry. Molecular Crystals and Liquid Crystals. 2015;614(1):30–38. doi:10.1080/15421406.2015.1049902
  • Stappert K, Unal D, Spielberg ET, et al. Influence of the counteranion on the ability of 1-dodecyl-3-methyltriazolium ionic liquids to form mesophases. Cryst Growth Des. 2015;15(2):752–758. doi:10.1021/cg501564j
  • Thomas E, Thomas D, Bhuvaneswari S, et al. 1-Hexadecyl-3-methylimidazolium chloride: structure, thermal stability and decomposition mechanism. J Mol Liq. 2018;249:404–411. doi:10.1016/j.molliq.2017.11.029
  • Riccobono A, Lazzara G, Rogers SE, et al. Synthesis and mesomorphism of related series of triphilic ionic liquid crystals based on 1,2,4-triazolium cations. J Mol Liq. 2021;321; doi:10.1016/j.molliq.2020.114758
  • Kapernaum N, Lange A, Ebert M, et al. Current topics in ionic liquid crystals. ChemPlusChem. 2022;87(1). doi:10.1002/cplu.202100397
  • Haege C, Jagiella S, Giesselmann F. Towards nematic phases in ionic liquid crystals–A simulation study. ChemPhysChem. 2023;24(1). doi:10.1002/cphc.202200424
  • Fouejio D, Kamsi RY, Assatse YT, et al. DFT studies of the structural, chemical descriptors and nonlinear optical properties of the drug dihydroartemisinin functionalized on C60 fullerene. Computational and Theoretical Chemistry. 2021;1202.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian, Inc., C.T. Wallingford, Gaussian 09, Revision A.02. 2009.
  • Becke AD. Density-Functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi:10.1063/1.464913
  • Khalili B, Mamaghani M, Bazdid-Vahdati N. Charge transfer excitations and constrained density functional theory. Theor Chem Acc. 2022;141:1–18. doi:10.1007/s00214-021-02860-8
  • Rassolov VA, Pople JA, Ratner MA, et al. 6-31G* basis set for atoms K through Zn. J Chem Phys. 1998;109(4):1223–1229. doi:10.1063/1.476673
  • Pudzianowski AT. MP2/6-311++G(d,p) study of ten ionic hydrogen-bonded binary systems: structures, normal modes, thermodynamics, and counterpoise energies. J Chem Phys. 1995;102(20):8029–8039. doi:10.1063/1.469001
  • Frisch A, Hratchian HP, Dennington RD, et al. GaussView Version 5.0. 8, Gaussian. Inc., Wallingford, 2009.
  • Zapata F, Caballero A, White NG, et al. Fluorescent charge-assisted halogen-bonding macrocyclic halo-imidazolium receptors for anion recognition and sensing in aqueous media. J. Am. Chem. Soc. 2012;134(28):11533–11541. doi:10.1021/ja302213r
  • Gomathi MA, Karnan C, Sivanesan T, et al. An organic benzimidazolium benzilate (BDBA) crystal: structural description, spectral investigations, DFT calculations, thermal, photoluminescence, linear and nonlinear optical analysis. Chem Phys Lett. 2021;776. doi:10.1016/j.cplett.2021.138705
  • Baiz CR, Błasiak B, Bredenbeck J, et al. Vibrational spectroscopic map, vibrational spectroscopy and intermolecular interaction. Chem. Rev. 2020;120(15):7152–7218. doi:10.1021/acs.chemrev.9b00813
  • Willock DJ. Molecular symmetry. John Wiley & Sons; 2009.
  • Albert S, Albert KK, Hollenstein H, et al. Fundamentals of rotation-vibration spectra. Handbook of High-Resolution Spectroscopy. 2011;3:117–173.
  • Foster AJ, Weinhold F. Natural hybrid orbitals. J Am Chem Soc 1980;102(24):7211–7218. doi:10.1021/ja00544a007
  • Tankov I, Yankova R, Genieva S, et al. Density functional theory study on the ionic liquid pyridinium hydrogen sulfate. J Mol Struct. 2017: 400–406. doi:10.1016/j.molstruc.2017.03.040
  • Kavitha E, Sundaraganesan N, Sebastian S. Molecular structure, vibrational spectroscopic and HOMO, LUMO studies of 4-nitroaniline by density functional method. Indian J Pure Appl Phys. 2010;48:20–30.
  • Politzer P. Atomic and molecular energies as functionals of the electrostatic potential. Theor Chem Acc. 2004: 395–399. doi:10.1007/s00214-003-0533-4
  • Sebastian S, Sundaraganesan N. The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-hydroxypiperidine by density functional method. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2010;75(3):941–952. doi:10.1016/j.saa.2009.11.030
  • Gadre SR, Suresh CH, Mohan N. Electrostatic potential topology for probing molecular structure, bonding and reactivity. Molecules 2021;26(11).
  • Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. Wiley Interdisciplinary Rev: Comput Mol Sci. 2022;12(5).
  • Krishnapriya VU, Suresh CH. The use of electrostatic potential at nuclei in the analysis of halogen bonding. New Journal of Chemistry. 2022;46(13):6158–6164. doi:10.1039/D2NJ00256F
  • Luque FJ, López JM, Orozco M. Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects; Miertus S, Scrocco E, Tomasi J, Chem Phys, 1981;55:117; Theoret Chem Acc. 2000;103:343–345. doi:10.1016/0301-0104(81)85090-2
  • Bayly CI, Cieplak P, Cornell W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993;97:10269–10280. doi:10.1021/j100142a004
  • Bayoumy AM, Ibrahim M, Omar A. Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Opt Quantum Electron. 2020,52: 1–13.
  • Alamro FS, Gomha SM, Shaban M, et al. Optical investigations and photoactive solar energy applications of new synthesized Schiff base liquid crystal derivatives. Sci Rep. 2021;11(1):15046), doi:10.1038/s41598-021-94533-6
  • Pandey DK, Kagdada HL, Materny A, et al. Hybrid structure of ionic liquid and ZnO nano clusters for potential application in dye-sensitized solar cells. J Mol Liq. 2021;322:114538), doi:10.1016/j.molliq.2020.114538
  • Erik Donovan H. Quantum chemistry and dynamics of excited states. Methods Appl. 2020: 47–75. doi:10.1002/9781119417774.ch3
  • Omar S, Shkir M, Khan MA, et al. A comprehensive study on molecular geometry, optical, HOMO-LUMO, and nonlinear properties of 1,3-diphenyl-2-propen-1-ones chalcone and its derivatives for optoelectronic applications: A computational approach. Optik (Stuttg). 2020;204:164172. doi:10.1016/j.ijleo.2020.164172
  • Rojas FS, Ojeda CB. Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008. Anal Chim Acta. 2009;635(1):22–44. doi:10.1016/j.aca.2008.12.039
  • Felscia UR, Rajkumar BJ, Sankar P, et al. Theoretical and experimental investigations of nitropyrene on silver for nonlinear optical and metal ion sensing applications. Mater Chem Phys. 2020: 243.
  • Chandra S, Chowdhury J, Ghosh M, et al. Genesis of enhanced Raman bands in SERS spectra of 2-mercaptoimidazole: FTIR, Raman, DFT and SERS. J Phys Chem A. 2012;116(45):10934–10947. doi:10.1021/jp307024t
  • Deifallah M, McMillan PF, Corà F. Electronic and structural properties of two-dimensional carbon nitride graphenes. J Phys Chem C. 2008;112(14):5447–5453. doi:10.1021/jp711483t
  • Dopieralski P, Panek J, Mierzwicki K, et al. Theoretical study on the polarizability and hyperpolarizability of hydrogen bonded complexes of nitropyridines with hydrogen fluoride. J Mol Struct: THEOCHEM. 2009;916(1-3):72–75. doi:10.1016/j.theochem.2009.09.008
  • Eaton DF. Nonlinear optical materials. Science. 1991;253(5017):281–287. doi:10.1126/science.253.5017.281
  • Andraud C, Brotin T, Garcia C, et al. Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. J Am Chem Soc 1994;116(5):2094–2102. doi:10.1021/ja00084a055
  • Midoune A, Messaoudi A. DFT/TD-DFT computational study of the tetrathiafulvalene-1,3-benzothiazole molecule to highlight its structural, electronic, vibrational and non-linear optical properties. Comptes Rendus Chimie. 2020;23(2):143–158. doi:10.5802/crchim.12
  • Fouejio D, Kamsi RY, Assatse YT, et al. DFT studies of the structural, chemical descriptors and nonlinear optical properties of the drug dihydroartemisinin functionalized on C60 fullerene. Comput Theoret Chem. 2021, 1202.
  • Prakasam M, Anbarasan PM. Second order hyperpolarizability of triphenylamine based organic sensitizers: a first principle theoretical study. RSC Adv. 2016;6(79):75242–75250. doi:10.1039/C6RA11200E
  • Masunov AE, Tannu A, Dyakov AA, et al. First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea. J Chem Phys. 2017;146(24). doi:10.1063/1.4986793
  • Khan AU, Muhammad S, Khera RA, et al. DFT study of superhalogen (AlF4) doped boron nitride for tuning their nonlinear optical properties. Optik (Stuttg). 2021;231.
  • Elangovan K, Boobalan MS, Senthil A, et al. Investigation on growth, structural, characterization and DFT computing of imidazolium 3-nitrobenzoate (I3NB) single crystal – towards third order nonlinear optical applications. J Mol Struct. 2019:720–733. doi:10.1016/j.molstruc.2019.07.011
  • Dixon DA, Matsuzawa N. Density functional study of the structures and nonlinear optical properties of urea. J Phys Chem. 1994;98(15):3967–3977. doi:10.1021/j100066a011
  • Aslam S, Ali HS, Ahmad M, et al. A combined experimental and theoretical study of alkyl 2-(3-benzoyl-4–hydroxy-1, 1-dioxido-2H-benzo [e][1, 2] thiazin-2-yl) acetates: synthesis, X-ray crystallography and DFT. J Mol Struct. 2022:1258.
  • Chemla DS. Nonlinear optical properties of organic molecules and crystals (Vol. 1). Elsevier; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.