149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Carbon structural evolution and interfacial reaction mechanism investigation of the green anode in kneading and baking via ReaxFF-MD and force-biased Monte Carlo

, , , , & ORCID Icon
Pages 332-343 | Received 20 Oct 2023, Accepted 12 Jan 2024, Published online: 15 Feb 2024

References

  • Schwarz HG, Briem S, Zapp P. Future carbon dioxide emissions in the global material flow of primary aluminium. Energy. 2001;26:775–795. doi:10.1016/S0360-5442(01)00032-9
  • Moors EHM. Technology strategies for sustainable metals production systems: a case study of primary aluminium production in The Netherlands and Norway. J Clean Prod. 2006;14:1121–1138. doi:10.1016/j.jclepro.2004.08.005
  • Polyakov AA, Gorlanov ES, Mushihin EA. Analytical modeling of current and potential distribution over carbon and Low-consumable anodes during aluminum reduction process. J Electrochem Soc. 2022;169:053502. doi:10.1149/1945-7111/ac6a16
  • Gorlanov ES, Mushihin EA, Schneider SR, et al. Synthesis of carbon- TiC/TiB2 composites at the electrolytic reduction of fused salts. J Electrochem Soc. 2023;170:102501. doi:10.1149/1945-7111/acfac4
  • Edwards L. Carbon anode raw materials – where is the cutting edge? Light Metals. 2020: 1163–1165. doi:10.1007/978-3-030-36408-3_157
  • Perruchoud RC, Meier MW, Fischer W. Worldwide pitch quality for prebaked anodes. Light Metals. 2016: 167–176. doi:10.1007/978-3-319-48200-2_24
  • Mannweiler U. Anode manufacturing: an introduction in anodes for the aluminium industry. R&D Carbon Ltd.Sierre. 1994: 197–202.
  • Chen B, Chaouki H, Picard D, et al. Physical property evolution of the anode mixture during the baking process. Materials (Basel). 2021;14:923. doi:10.3390/ma14040923
  • Kuhnt C, Edwards L, Lubin M, et al. Influence of coke calcining level on anode real density, LC and other properties using a constant baking cycle. Light Metals. 2019: 1281–1289. doi:10.1007/978-3-030-05864-7_157
  • Tian Y, Li GY, Zhang H, et al. Molecular basis for coke strength: stacking-fault structure of wrinkled carbon layers. Carbon N Y. 2020;162:56–65. doi:10.1016/j.carbon.2020.02.026
  • Li K, Li H, Sun M, et al. Atomic-scale understanding about coke carbon structural evolution by experimental characterization and ReaxFF molecular dynamics. Energy Fuels. 2019;33:10941–10952. doi:10.1021/acs.energyfuels.9b03154
  • Li K, Zhang H, Li G, et al. ReaxFF molecular dynamics simulation for the graphitization of amorphous carbon: a parametric study. J Chem Theory Comput. 2018;14:2322–2331. doi:10.1021/acs.jctc.7b01296
  • Foosnaes T, Kulset N, Linga H. Measurement and control of the calcining level in anode baking furnaces. Light Metals. 2013: 418–421. doi:10.1007/978-3-319-48200-2_57
  • Lu L, Kong C, Sahajwalla V, et al. Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel. 2002;81(9):1215–1225. doi:10.1016/S0016-2361(02)00035-2
  • Wu Y, Wu S, Gu J, et al. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke. Process Saf Environ Prot. 2009;87:323–330. doi:10.1016/j.psep.2009.05.001
  • Grégoire F, Gosselin L. Comparison of three combustion models for simulating anode baking furnaces. Int J Therm Sci. 2018;129:532–544. doi:10.1016/j.ijthermalsci.2018.04.006
  • Fischer WK, Keller F, Perruchoud RC. Baking parameters and the resulting anode quality. Light Metals. 2016: 427–433. doi:10.1007/978-3-319-48200-2_59
  • Aarhaug TA, Brandvik T, Kjos OS, et al. A study of anode baking gas composition. Light Metals. 2018: 1379–1385. doi:10.1007/978-3-319-72284-9_180
  • Brandvik T, Gaertner H, Ratvik AP, et al. In situ monitoring of pit gas composition during baking of anodes for aluminum electrolysis. Metall Mater Trans B. 2019;50:950–957. doi:10.1007/s11663-018-1500-8
  • Bui RT, Charette A, Bourgeois T. Simulating the process of carbon anode baking used in the aluminum industry. Metall Mater Trans B. 1984;15:487–492.
  • Severo DS, Gusberti V, Pint ECV. Advanced 3D modelling for anode baking furnaces. Light Metals. 2005: 697–702.
  • Zhong Q, Mao Q, Zhang L, et al. Structural features of Qingdao petroleum coke from HRTEM lattice fringes: distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation. Carbon. 2018;129:790–802.
  • You Z, Xiao J, Mao Q, et al. Microstructural features transformation at various temperature stages and multi-scale atomistic representations of calcined petroleum coke based on HRTEM. Fuel. 2022;330:125521. doi:10.1016/j.fuel.2022.125521
  • You Z, Xiao J, Wang G, et al. Molecular representation and atomic-level coking evolution investigation of modified coal tar pitch via 13C NMR, MALDI-TOF-MS, SAXS, and ReaxFF MD. Fuel. 2023;348:128561. doi:10.1016/j.fuel.2023.128561
  • Gabdulkhakov RR, Rudko VA, Pyagay IN. Methods for modifying needle coke raw materials by introducing additives of various origin (review). Fuel. 2022;310:122265. doi:10.1016/j.fuel.2021.122265
  • Gabdulkhakov RR, Rudko VA, Efimov II, et al. Quality assessment of needle coke used in the production of graphite electrodes for metallurgical furnaces. Tsm. 2022: 46–56. doi:10.17580/tsm.2022.07.05
  • Efimov I, Smyshlyaeva KI, Povarov VG, et al. UNIFAC residual marine fuels stability prediction from NMR and elemental analysis of SARA components. Fuel. 2023;352:129014. doi:10.1016/j.fuel.2023.129014
  • Martínez L, Andrade R, Birgin EG, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164. doi:10.1002/jcc.21224
  • Materials Studio Software. (2010). Accelrys Inc, San Diego,CA.
  • Chenoweth K, Van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A. 2008;112:1040–1053. doi:10.1021/jp709896w
  • Bal KM, Neyts EC. On the time scale associated with Monte Carlo simulations. J Chem Phys. 2014;141:204104. doi:10.1063/1.4902136
  • Van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001;105:9396–9409. doi:10.1021/jp004368u
  • Castro-Marcano F, Kamat AM, Russo MF, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame. 2012;159:1272–1285. doi:10.1016/j.combustflame.2011.10.022
  • Zhong Q, Zhang Y, Shabnam S, et al. Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations. Energy Fuels. 2019;33:8065–8075. doi:10.1021/acs.energyfuels.9b01425
  • Lu Q, Guo R, Zhang H, et al. To stimulate, and to inhibit: a theoretical understanding of the sodium-catalytic mechanism of coke gasification. Chem Eng J. 2022;435:135091. doi:10.1016/j.cej.2022.135091
  • Mees MJ, Pourtois G, Neyts EC, et al. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion. Phys Rev B. 2012;85:134301. doi:10.1103/PhysRevB.85.134301
  • Soria FA, Zhang W, Paredes-Olivera PA, et al. Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules. J Phys Chem C. 2018;122:23515–23527. doi:10.1021/acs.jpcc.8b07075
  • Hong D, Liu L, Wang C, et al. Construction of a coal char model and its combustion and gasification characteristics: molecular dynamic simulations based on ReaxFF. Fuel. 2021;300:120972. doi:10.1016/j.fuel.2021.120972
  • Wang X, Wang S, Zhao Y, et al. Construction and verification of vitrinite-rich and inertinite-rich Zhundong coal models at the aggregate level: new insights from the spatial arrangement and thermal behavior perspective. RSC Adv. 2023;13:7569–7584. doi:10.1039/D2RA08089C
  • Liu Y, Liu S, Zhang R, et al. The molecular model of Marcellus shale kerogen: experimental characterization and structure reconstruction. Int J Coal Geol. 2021;246:103833. doi:10.1016/j.coal.2021.103833
  • Liu Y, Zhu Y, Li W, et al. Ultra micropores in macromolecular structure of subbituminous coal vitrinite. Fuel. 2017;210:298–306. doi:10.1016/j.fuel.2017.08.069
  • Guttman L. Ring structure of the crystalline and amorphous forms of silicon dioxide. J Non Cryst Solids. 1990;116:145–147. doi:10.1016/0022-3093(90)90686-G
  • Vanvoren C. Recent improvement in paste plant design industrial application and results. Light Metals. 2016: 358–364. doi:10.1007/978-3-319-48200-2_47
  • Qingcai Z, Jingli Z, Qingbo Z. Study of manufacturing technology for high quality anodes. Light Metals. 2014: 1209–1212. doi:10.1007/978-3-319-48144-9_202
  • Hussein A, Lu Y, Mollaabbasi R, et al. Bio-pitch as a binder in carbon anodes for aluminum production: bio-pitch properties and its interaction with coke particles. Fuel. 2020;275:117875. doi:10.1016/j.fuel.2020.117875
  • Raðenovi A. Properties of carbon anode components for aluminium production. Nafta. 2012;63(3-4):111–114.
  • Ouellet R, Jiao Q, Chin E. Anode backing furnace modeling for process optimization. Light Metals. 1995: 653–662.
  • Fang Y. Application case of waste heat utilization technology of calcined flue gas in the production process of prebaked anode for aluminum electrolysis. EMIM; 2022: 1–4.
  • Baiteche M, Kocaefe D, Kocaefe Y, et al. Description and applications of a 3D mathematical model for horizontal anode baking furnaces. Light Metals. 2016: 1115–1120. doi:10.1007/978-3-319-48248-4_187
  • Tajik AR, Shamim T, Zaidani M, et al. The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling. Appl Energy. 2018;230:207–219. doi:10.1016/j.apenergy.2018.08.078
  • Rudko VA, Gabdulkhakov RR, Pyagay IN. Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia. J Min Inst. 2023;20:795–809. doi:10.1021/ef050313l
  • Ehrburger P, Sanseigne E, Tahon B. Formation of porosity and change in binder pitch properties during thermal treatment of green carbon materials. Carbon. 1996;34:1493–1499.
  • Kvande H, Drabløs PA. The aluminum smelting process and innovative alternative technologies. J Occup Environ Med. 2014;56:S23–S32. doi:10.1097/JOM.0000000000000062
  • Putri E, Brooks G, Snook G, et al. (2017). Anode characterisation and gas diffusion behaviour in aluminium smelting;1805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.