42
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fluorination effects on bithiophene bridged hole transporting materials for perovskite solar cells

&
Pages 613-621 | Received 07 Nov 2023, Accepted 13 Mar 2024, Published online: 02 Apr 2024

References

  • Kim JY, Lee J-W, Jung HS, et al. High-efficiency perovskite solar cells. Chem Rev. 2020;120:7867–7918. doi:10.1021/acs.chemrev.0c00107
  • Qiang Z, Wang C, Gao X, et al. Challenges of scalable development for perovskite/silicon tandem solar cells. ACS Appl Energy Mater. 2022;5:6499–6515. doi:10.1021/acsaem.2c00354
  • Yang J, Hu W, Zhao J, et al. Effect of fluorine substitution on properties of hole-transporting materials for perovskite solar cells. Dyes Pigm. 2022;204:110370. doi:10.1016/j.dyepig.2022.110370
  • Chu L, Zhai S, Ahmad W, et al. High-performance large-area perovskite photovoltaic modules. Nano Res Energy. 2022;1:e9120024. doi:10.26599/NRE.2022.9120024
  • Saliba M, Correa-Baena JP, Grätzel M, et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed. 2018;57:2554–2569. doi:10.1002/anie.201703226
  • Yu C-J. Advances in modelling and simulation of halide perovskites for solar cell applications. J Phys Energy. 2019;1:022001. doi:10.1088/2515-7655/aaf143
  • Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131:6050–6051. doi:10.1021/ja809598r
  • Yang J, Hu W. Side substitution on benzothiadiazole-based hole transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells. Curr Appl Phys. 2023;45:18–24. doi:10.1016/j.cap.2022.10.009
  • Liu K, Yao Y, Wang J, et al. Spiro[fluorene-9,9′-xanthene]-based hole transporting materials for efficient perovskite solar cells with enhanced stability. Mater Chem Front. 2017;1:100–110. doi:10.1039/C6QM00097E
  • Kim GW, Choi H, Kim M, et al. Hole transport materials in conventional structural (n–i–p) perovskite solar cells: from past to the future. Adv Energy Mater. 2020;10:1903403. doi:10.1002/aenm.201903403
  • Rakstys K, Igci C, Nazeeruddin MK. Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. Chem Sci. 2019;10:6748–6769. doi:10.1039/C9SC01184F
  • Wang ZK, Liao LS. Doped charge-transporting layers in planar perovskite solar cells. Adv Opt Mater. 2018;6:1800276. doi:10.1002/adom.201800276
  • Rodríguez-Seco C, Cabau L, Vidal-Ferran A, et al. Advances in the synthesis of small molecules as hole transport materials for lead halide perovskite solar cells. Acc Chem Res. 2018;51:869–880. doi:10.1021/acs.accounts.7b00597
  • Yang X, Wang H, Cai B, et al. Progress in hole-transporting materials for perovskite solar cells. J Energy Chem. 2018;27:650–672. doi:10.1016/j.jechem.2017.12.017
  • Zhu XD, Ma XJ, Wang YK, et al. Hole-transporting materials incorporating carbazole into spiro-core for highly efficient perovskite solar cells. Adv Funct Mater. 2019;29:1807094. doi:10.1002/adfm.201807094
  • Zhang X, Liu X, Ghadari R, et al. Tetraphenylethylene-arylamine derivatives as hole transporting materials for perovskite solar cells. ACS Appl Mater Interfaces. 2021;13:12322–12330. doi:10.1021/acsami.1c01606
  • Zhang X, Ma S, Wu G, et al. Fused tetraphenylethylene–triphenylamine as an efficient hole transporting material in perovskite solar cells. Chem Commun. 2020;56:3159–3162. doi:10.1039/C9CC09901H
  • Molina D, Sheibani E, Yang B, et al. Molecularly engineered low-cost organic hole-transporting materials for perovskite solar cells: the substituent effect on non-fused three-dimensional systems. ACS Appl Energy Mater. 2022;5:3156–3165. doi:10.1021/acsaem.1c03775
  • Chen J, Xia J, Yu H-J, et al. Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells. Chem Mater. 2019;31:5431–5441. doi:10.1021/acs.chemmater.9b00702
  • Zhang X, Liu X, Wu N, et al. Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells. J Energy Chem. 2022;67:19–26. doi:10.1016/j.jechem.2021.09.046
  • Hu W, Zhang Z, Cui J, et al. Influence of π-bridge conjugation on the electrochemical properties within hole transporting materials for perovskite solar cells. Nanoscale. 2017;9:12916–12924. doi:10.1039/C7NR04026A
  • Vaitukaityte D, Momblona C, Rakstys K, et al. Cut from the same cloth: enamine-derived spirobifluorenes as hole transporters for perovskite solar cells. Chem Mater. 2021;33:6059–6067. doi:10.1021/acs.chemmater.1c01486
  • Yang K, Liao Q, Huang J, et al. Intramolecular noncovalent interaction-enabled dopant-free hole-transporting materials for high-performance inverted perovskite solar cells. Angew Chem Int Ed. 2022;61:e202113749. doi:10.1002/anie.202113749
  • Sun X, Li Z, Yu X, et al. Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew Chem Int Ed. 2021;60:7227–7233. doi:10.1002/anie.202016085
  • Sun Z-Z, Long R. Thia[5]helicene-based D−π–A-type molecular semiconductors for stable and efficient perovskite solar cells: a theoretical study. J Phys Chem C. 2023;127:8953–8962. doi:10.1021/acs.jpcc.3c01963
  • Sun Z-Z, Long R. Interfacial and molecular engineering of a helicene-based molecular semiconductor for stable and efficient perovskite solar cells. J Phys Chem C. 2023;127:12913–12922. doi:10.1021/acs.jpcc.3c02776
  • Sun Z-Z, Yang J, Ding W-L, et al. Structural engineering of FDT toward promising spiro-typed hole-transporting materials: promoting the hole transport and stabilizing the HOMO levels. J Phys Chem C. 2022;126:11529–11536. doi:10.1021/acs.jpcc.2c03878
  • Xu L, Huang P, Zhang J, et al. N,N-di-para-methylthiophenylamine-substituted (2-ethylhexyl)-9H-carbazole: a simple, dopant-free hole-transporting material for planar perovskite solar cells. J Phys Chem C. 2017;121:21821–21826. doi:10.1021/acs.jpcc.7b04469
  • Zhang J, Sun Q, Chen Q, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv Funct Mater. 2019;29:1900484. doi:10.1002/adfm.201900484
  • Cui C, Wong W-Y, Li Y. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution. Energy Environ Sci. 2014;7:2276–2284. doi:10.1039/C4EE00446A
  • Cui C, He Z, Wu Y, et al. High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain. Energy Environ Sci. 2016;9:885–891. doi:10.1039/C5EE03684D
  • Yin X, Zhou J, Song Z, et al. Dithieno[3,2-b:2′,3′-d]pyrrol-cored hole transport material enabling over 21% efficiency dopant-free perovskite solar cells. Adv Funct Mater. 2019;29:1904300. doi:10.1002/adfm.201904300
  • Zhang J, Sun Q, Chen Q, et al. Dibenzo[b,d]thiophene-cored hole-transport material with passivation effect enabling the high-efficiency planar p–i–n perovskite solar cells with 83% fill factor. Solar RRL. 2020;4:1900421. doi:10.1002/solr.201900421
  • Liu Z, Wang Y, Sun Z, et al. Exploration of the effect of fluoridation on the doping-free linear dibenzothiophene-based hole-transport material applied for inverted perovskite solar cells. ACS Appl Energy Mater. 2023;6:1274–1282. doi:10.1021/acsaem.2c03000
  • Wang YK, Ma H, Chen Q, et al. Fluorinating dopant-free small-molecule hole-transport material to enhance the photovoltaic property. ACS Appl Mater Interfaces. 2021;13:7705–7713. doi:10.1021/acsami.0c20584
  • Li N, Tao S, Chen Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy. 2019;4:408–415. doi:10.1038/s41560-019-0382-6
  • Wan L, Zhang W, Fu S, et al. Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material. J Mater Chem A. 2020;8:6517–6523. doi:10.1039/D0TA00522C
  • Perdigón-Toro L, Zhang H, Markina A, et al. Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell. Adv Mater. 2020;32:1906763. doi:10.1002/adma.201906763
  • Jeong I, Bae JW, Son S, et al. A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells. Dyes Pigm. 2019;164:1–6. doi:10.1016/j.dyepig.2019.01.002
  • Frisch M, Trucks G, Schlegel H, et al. 2009. Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT[J]. See also: URL: http://www.gaussian.com.
  • Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem. 2003;24:669–681. doi:10.1002/jcc.10189
  • Lu T, Chen F. Multiwfn: a multifunctional wave function analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885
  • Day G, Motherwell W, Ammon H, et al. A third blind test of crystal structure prediction. Acta Crystallogr Sect B: Struct Sci. 2005;61:511–527. doi:10.1107/S0108768105016563
  • Troisi A. Prediction of the absolute charge mobility of molecular semiconductors: the case of rubrene. Adv Mater. 2007;19:2000–2004. doi:10.1002/adma.200700550
  • Gershenson M, Podzorov V, Morpurgo A. Colloquium: electronic transport in single-crystal organic transistors. Rev Mod Phys. 2006;78:973–989. doi:10.1103/RevModPhys.78.973
  • Coropceanu V, Cornil J, da Silva Filho DA, et al. Charge transport in organic semiconductors. Chem Rev. 2007;107:926–952. doi:10.1021/cr050140x
  • Deng W-Q, Sun L, Huang J-D, et al. Quantitative prediction of charge mobilities of π-stacked systems by first-principles simulation. Nat Protoc. 2015;10:632–642. doi:10.1038/nprot.2015.038
  • Sundar VC, Zaumseil J, Podzorov V, et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science. 2004;303:1644–1646. doi:10.1126/science.1094196
  • Lee K-M, Yang J-Y, Lai P-S, et al. A star-shaped cyclopentadithiophene-based dopant-free hole-transport material for high-performance perovskite solar cells. Chem Commun. 2021;57:6444–6447. doi:10.1039/D1CC02396A
  • Ghaderian A, Pegu M, Hemasiri NH, et al. The impact of fluorine atoms on a triphenylamine-based dopant-free hole-selective layer for perovskite solar cells. J Mater Chem C. 2022;10:476–484. doi:10.1039/D1TC04972K
  • Ren J, Qu J, Chen J, et al. Fluorinated dopant-free hole-transporting material for efficient and stable perovskite solar cells with carbon cathode. J Power Sources. 2018;401:29–36. doi:10.1016/j.jpowsour.2018.08.070
  • Völker SF, Collavini S, Delgado JL. Organic charge carriers for perovskite solar cells. Chemsuschem. 2015;9:3012–3028.
  • Chi W, Sun PP, Li ZS. A strategy to improve the efficiency of hole transporting materials: introduction of a highly symmetrical core. Nanoscale. 2016;8:17752–17756. doi:10.1039/C6NR06116H
  • Zhang Z, Hu W, Cui J, et al. Theoretical insights into the effect of a conjugated core on the hole transport properties of hole-transporting materials for perovskite solar cells. Phys Chem Chem Phys. 2017;19:24574–24582. doi:10.1039/C7CP04754A
  • Hua Y, Xu J, Liu B, et al. Facile synthesis of fluorene-based hole transport materials for highly efficient perovskite solar cells and solid-state dye-sensitized solar cells. Nano Energy. 2016;26:108–113. doi:10.1016/j.nanoen.2016.05.006
  • Lin YD, Lee KM, Ke BY, et al. Rational design of cyclopenta[2,1-b;3,4-b′]dithiophene-bridged hole transporting materials for highly efficient and stable perovskite solar cells. Energy Technol. 2019;7:307–316. doi:10.1002/ente.201800939
  • Jin F, Chu B, Li W, et al. Highly efficient organic tandem solar cell based on SubPc:C 70 bulk heterojunction. Org Electron. 2014;15:3756–3760. doi:10.1016/j.orgel.2014.10.019
  • Yavuz I, Martin BN, Park J, et al. Theoretical study of the molecular ordering, paracrystallinity, and charge mobilities of oligomers in different crystalline phases. J Am Chem Soc. 2015;137:2856–2866. doi:10.1021/ja5076376
  • Zhang XY, Zhao GJ. Anisotropic charge transport in bisindenoanthrazoline-based n-type organic semiconductors. J Phys Chem C. 2012;116:13858–13864. doi:10.1021/jp303235x
  • Politzer P, Murray JS, Clark T. Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. Phys Chem Chem Phys. 2010;12:7748–7757. doi:10.1039/c004189k
  • Li HP, Shen XP, Han K, et al. Quantum chemistry study on the third-order nonlinear optical properties of spirobifluorene derivatives. Comput Theor Chem. 2013;1023:95–98. doi:10.1016/j.comptc.2013.09.016
  • Ho J, Klamt A, Coote ML. Comment on the correct use of continuum solvent models. J Phys Chem A. 2010;114:13442–13444. doi:10.1021/jp107136j
  • Hua J, Li X, Cai M, et al. A comparative study of o,p-dimethoxyphenyl-based hole transport materials by altering π-linker units for highly efficient and stable perovskite solar cells. J Mater Chem A. 2017;5:10480–10485. doi:10.1039/C7TA02556D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.