87
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploring breast cancer treatment paradigms: innovative design, molecular docking and dynamic simulation of LOXL2 inhibitors

ORCID Icon & ORCID Icon
Pages 631-643 | Received 31 Jan 2024, Accepted 18 Mar 2024, Published online: 31 Mar 2024

References

  • Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A, Siegel RL. Breast Cancer Statistics, 2022. CA Cancer J Clin. Breast cancer statistics. CA Cancer J Clin. Nov 2022;72(6):524–541. doi:10.3322/caac.21754. Epub 2022 Oct 3. PMID: 36190501.
  • Ferreira S, Saraiva N, Rijo P, et al. Loxl2 inhibitors and breast cancer progression. Antioxidants. Feb 2021;10(2):312. doi:10.3390/antiox10020312
  • Hayashi K, Fong KSK, Mercier F, et al. Comparative immunocytochemical localization of lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) proteins: changes in the expression of LOXL during development and growth of mouse tissues. J Mol Histol. Nov 2004;35(8-9):845–855. doi:10.1007/s10735-004-2340-1
  • Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. July 2012;12(8):540–552. doi:10.1038/nrc3319
  • Kumari S, Panda TK, Pradhan T. Lysyl oxidase: its diversity in health and diseases. Indian J Clin Biochem. Jun 2017;32(2):134–141. doi:10.1007/s12291-016-0576-7
  • Wu L, Zhu Y. The function and mechanisms of action of LOXL2 in cancer. Int J Mol Med. Nov 2015;36(5):1200–1204. doi:10.3892/ijmm.2015.2337
  • Janyasupab M, Lee Y-H, Zhang Y, et al. Detection of lysyl oxidase-like 2 (LOXL2), a biomarker of metastasis from breast cancers using human blood samples. Recent Pat Biomark. Aug 2015;5(2):93–100. doi:10.2174/2210309005666150804195033
  • Leeming DJ, Willumsen N, Sand JMB, et al. A serological marker of the N-terminal neoepitope generated during LOXL2 maturation is elevated in patients with cancer or idiopathic pulmonary fibrosis. Biochem Biophys Rep. Mar 2019;17:38–43. doi:10.1016/J.BBREP.2018.11.002
  • Hase H, Jingushi K, Ueda Y, et al. Loxl2 status correlates with tumor stage and regulates integrin levels to promote tumor progression in ccRCC. Mol Cancer Res. Dec 2014;12(12):1807–1817. doi:10.1158/1541-7786.MCR-14-0233
  • Shao B, Zhao X, Liu T, et al. Loxl2 promotes vasculogenic mimicry and tumour aggressiveness in hepatocellular carcinoma. J Cell Mol Med. Feb 2019;23(2):1363–1374. doi:10.1111/jcmm.14039
  • Wu L, Zhang Y, Zhu Y, et al. The effect of LOXL2 in hepatocellular carcinoma. Mol Med Rep. Sep 2016;14(3):1923–1932. doi:10.3892/mmr.2016.5474
  • Zhan P, Lv XJ, Ji YN, et al. Increased lysyl oxidase-like 2 associates with a poor prognosis in non-small cell lung cancer. Clin Respir J. Feb 2018;12(2):712–720. doi:10.1111/crj.12584
  • Chopra V, Sangarappillai RM, Romero-Canelón I, et al. Lysyl oxidase like-2 (LOXL2): an emerging oncology target. Adv Ther (Weinh). Feb 2020;3(2):1900119. doi:10.1002/adtp.201900119
  • Barker HE, Cox TR, Erler JT. The rationale for targeting the LOX family in cancer. Nat Rev Cancer. July 2012;12(8):540–552. doi:10.1038/nrc3319
  • Haloallylamine indole and azaindole derivative inhibitors of lysyl oxidases and uses thereof, Jun 2020.
  • Hutchinson JH, Rowbottom MW, Lonergan D, et al. Small molecule lysyl oxidase-like 2 (LOXL2) inhibitors: The identification of an inhibitor selective for LOXL2 over LOX. ACS Med Chem Lett. Apr 2017;8(4):423–427. doi:10.1021/acsmedchemlett.7b00014
  • Chang, Lucas MC, Leonte LE, et al. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer. Oncotarget. 2017 Apr 18;8(16):26066–26078. doi:10.18632/oncotarget.15257. PMID:28199967.
  • Rowbottom MW, Bain G, Calderon I, et al. Identification of 4-(aminomethyl)-6-(trifluoromethyl)-2-(phenoxy)pyridine derivatives as potent, selective, and orally efficacious inhibitors of the copper-dependent amine oxidase, lysyl oxidase-like 2 (LOXL2). J Med Chem. May 2017;60(10):4403–4423. doi:10.1021/acs.jmedchem.7b00345
  • Cousins KR. Chemdraw ultra 9.0. CambridgeSoft, 100 CambridgePark drive, Cambridge, MA 02140. www.cambridgesoft.com. See Web site for pricing options. J Am Chem Soc. Mar 2005;127(11):4115–4116. doi:10.1021/ja0410237
  • Mohamed GA, Omar AM, AlKharboush DF, et al. Structure-based virtual screening and molecular dynamics simulation assessments of depsidones as possible selective cannabinoid receptor type 2 agonists. Molecules. Feb 2023;28(4):1761. doi:10.3390/molecules28041761
  • Hashemi ZS, Zarei M, Fath MK, et al. In silico approaches for the design and optimization of interfering peptides against protein–protein interactions. Front Mol Biosci. Apr 2021;8:282. doi:10.3389/fmolb.2021.669431
  • Biovia DS. (2019). Discovery Studio Visualizer. San Diego. - References - Scientific Research Publishing. [accessed 2023 July 23]. Available from: https://www.scirp.org/(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid = 2605882
  • Brogi S, Ramalho TC, Kuca K, et al. Editorial: in silico methods for drug design and discovery. Front Chem. Aug 2020;8:612. doi:10.3389/fchem.2020.00612
  • de Ruyck J, Brysbaert G, Blossey R, et al. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinforma Chem. Jun 2016;9(1):1–11. doi:10.2147/AABC.S105289
  • Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. Jan 2010;31(2):455–461. doi:10.1002/jcc.21334
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–250. doi:10.1007/978-1-4939-2269-7_19
  • Daina A, Michielin O, Zoete V. Swissadme: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. Mar 2017;7(1):1–13. doi:10.1038/srep42717
  • Cheng F, Li W, Zhou Y, et al. Admetsar: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. Nov 2012;52(11):3099–3105. doi:10.1021/ci300367a
  • CA L. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. Dec 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.007
  • Weininger D. Smiles, a chemical language and information system: 1: introduction to methodology and encoding rules. J Chem Inf Comput Sci. Feb 1988;28(1):31–36. doi:10.1021/ci00057a005
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. July 2018;46(Web Server issue):W257. doi:10.1093/NAR/GKY318
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. May 2015;58(9):4066–4072. doi:10.1021/acs.jmedchem.5b00104
  • Islam MR, Awal MA, Khames A, et al. Computational identification of druggable bioactive compounds from Catharanthus roseus and Avicennia marina against colorectal cancer by targeting thymidylate synthase. Molecules. Mar 2022;27(7):2089. doi:10.3390/molecules27072089
  • Bhatelé A, Kalé LV, Kumar S. Dynamic topology aware load balancing algorithms for molecular dynamics applications. New York, NY, USA. In Proceedings of the 23rd international conference on Supercomputing (ICS '09). 2009. doi:10.1145/1542275.1542295
  • Harder E, Damm W, Maple J, et al. Opls3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. Jan 2016;12(1):281–296. doi:10.1021/acs.jctc.5b00864
  • Macalino SJY, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery. Arch Pharmacal Res. 2015 Sep 22;38(9):1686–1701. doi:10.1007/s12272-015-0640-5. Pharmaceutical Society of Korea.
  • Fu Y, Ye T, Liu YX, et al. Based on the virtual screening of multiple pharmacophores, docking and molecular dynamics simulation approaches toward the discovery of novel HPPD inhibitors. Int J Mol Sci. Aug 2020;21(15):5546. doi:10.3390/ijms21155546
  • Zamzami MA. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn. 2023;41(5):1846–1858. doi:10.1080/07391102.2021.2025147
  • Harigua-Souiai E, Cortes-Ciriano I, Desdouits N, et al. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. BMC Bioinformatics. Mar 2015;16(1):1–15. doi:10.1186/s12859-015-0518-z
  • Zhang X, Wang Q, Wu J, et al. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state. Proc Natl Acad Sci USA. Apr 2018;115(15):3828–3833. doi:10.1073/pnas.1720859115
  • Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365–382. doi:10.1007/978-1-59745-177-2_19
  • Barker HE, Chang J, Cox TR, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. Mar 2011;71(5):1561–1572. doi:10.1158/0008-5472.CAN-10-2868
  • US20200317666A1 - Haloallylamine indole and azaindole derivative inhibitors of lysyl oxidases and uses thereof - Google Patents. [accessed 2023 May 25]. Available from: https://patents.google.com/patent/US20200317666A1
  • Boobis A, Gundert-Remy U, Kremers P, et al. In silico prediction of ADME and pharmacokinetics: report of an expert meeting organised by COST B15. Eur J Pharm Sci. Dec 2002;17(4-5):183–193. doi:10.1016/S0928-0987(02)00185-9
  • Zhu L, Zhao J, Zhang Y, et al. Adme properties evaluation in drug discovery: in silico prediction of blood-brain partitioning. Mol Divers. Nov 2018;22(4):979–990. doi:10.1007/s11030-018-9866-8
  • Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. Mar 2016;6(2):147–172. doi:10.1002/wcms.1240
  • Chaudhari MP, Ghanwat AA, Thool SS. Molecular dynamics simulations in drug design: A computational perspective. Journal of Applied Pharmaceutical Science. 2019;9(12):133–139. doi:10.7324/JAPS.2019.91219
  • Aier I, Varadwaj PK, Raj U. Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci Rep. Oct 2016;6(1):1–10. doi:10.1038/srep34984
  • Islam MR, Osman OI, Hassan WMI. Identifying novel therapeutic inhibitors to target FMS-like tyrosine kinase-3 (FLT3) against acute myeloid leukemia: a molecular docking, molecular dynamics, and DFT study. J Biomol Struct Dyn. 2023;42(1):82–100. doi:10.1080/07391102.2023.2192798. PMID: 36995071.
  • Samad A, Huq MA, Rahman MS. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci Rep. 2022;12(1539). doi:10.1038/s41598-022-05621-0
  • Durham E, Dorr B, Woetzel N, et al. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. J Mol Model. 2009;15(9):1093–1108. doi:10.1007/s00894-009-0454-9
  • Ahmed S, Ali M, Ruma R, et al. Molecular docking and dynamics simulation of natural compounds from betel leaves (Piper betle L.) for investigating the potential inhibition of alpha-amylase and alpha-glucosidase of type 2 diabetes. Molecules. July 2022;27(14):4526. doi:10.3390/molecules27144526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.