119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Predicting optimal chain lengths in atomistic simulations of solvated polymers

&
Pages 687-695 | Received 01 Feb 2024, Accepted 05 Apr 2024, Published online: 18 Apr 2024

References

  • Everaers R, Karimi-Varzaneh HA, Fleck F, et al. Kremer–Grest models for commodity polymer melts: linking theory, experiment, and simulation at the Kuhn scale. Macromolecules. 2020;53(6):1901–1916. doi:10.1021/acs.macromol.9b02428
  • Hollborn K-U, Schneider L, Müller M. Effect of slip-spring parameters on the dynamics and rheology of soft, coarse-grained polymer models. J Phys Chem B. 2022;126:6725–6739. doi:10.1021/acs.jpcb.2c03983
  • Li W, Jana PK, Behbahani AF, et al. Dynamics of long entangled polyisoprene melts via multiscale modeling. Macromolecules. 2021;54(18):8693–8713. doi:10.1021/acs.macromol.1c01376
  • Young N, Balsara N. Flory–Huggins equation. In: Kobayashi S, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Berlin, Heidelberg: Springer; 2014. p. 1–7.
  • Liu J-L, Li C-L. A generalized Debye-Hückel theory of electrolyte solutions. AIP Advances. 2019;9:015214. doi:10.1063/1.5081863
  • Venkatram S, Kim C, Chandrasekaran A, et al. Critical assessment of the Hildebrand and Hansen solubility parameters for polymers. J Chem Inf Model. 2019;59:4188–4194. doi:10.1021/acs.jcim.9b00656
  • Cohen SR, Alshareedah I, Borcherds WM, et al. Modified Rouse-Zimm theory for computing sequence-specific viscoelastic properties of biomolecular condensates. Biophys J. 2023;122:206a. doi:10.1016/j.bpj.2022.11.1238
  • Nguyen D, Tao L, Li Y. Integration of machine learning and coarse-grained molecular simulations for polymer materials: physical understandings and molecular design. Front Chem. 2022;9:820417. doi:10.3389/fchem.2021.820417
  • Dhamankar S, Webb MA. Chemically specific coarse-graining of polymers: methods and prospects. J Polym Sci. 2021;59:2613–2643. doi:10.1002/pol.20210555
  • Joshi SY, Deshmukh SA. A review of advancements in coarse-grained molecular dynamics simulations. Mol Simul. 2021;47:786–803. doi:10.1080/08927022.2020.1828583
  • Gartner III TE, Jayaraman A. Modeling and simulations of polymers: a roadmap. Macromolecules. 2019;52(3):755–786. doi:10.1021/acs.macromol.8b01836
  • Olowookere FV, Al Alshaikh A, Bara JE, et al. Effects of chain length on the structure and dynamics of polyvinyl chloride during atomistic molecular dynamics simulations. Mol Simul. 2023;49(15):1401–1412. doi:10.1080/08927022.2023.2234493
  • Zhang Z, Wang Y, Liu P, et al. Quantitatively predicting the mechanical behavior of elastomers via fully atomistic molecular dynamics simulation. Polymer. 2021;223:123704. doi:10.1016/j.polymer.2021.123704
  • Kumar A, Sharma K, Dixit AR. A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. 2020;46:136–154. doi:10.1080/08927022.2019.1680844
  • Olowookere FV, Barbosa GD, Turner CH. Coarse-grained molecular dynamics modeling of polyvinyl chloride: solvent interactions, mechanical behavior, and dehydrochlorination effects. Macromolecules. 2023;56(24):10006–10015. doi:10.1021/acs.macromol.3c02211
  • Dünweg B, Kremer K. Molecular dynamics simulation of a polymer chain in solution. J Chem Phys. 1993;99:6983–6997. doi:10.1063/1.465445
  • Bormuth A, Henritzi P, Vogel M. Chain-length dependence of the segmental relaxation in polymer melts: molecular dynamics simulation studies on poly (propylene oxide). Macromolecules. 2010;43:8985–8992. doi:10.1021/ma101721d
  • Harmandaris VA, Mavrantzas VG, Theodorou DN. Atomistic molecular dynamics simulation of polydisperse linear polyethylene melts. Macromolecules. 1998;31:7934–7943. doi:10.1021/ma980698p
  • Zou L, Zhang W. Molecular dynamics simulations of the effects of entanglement on polymer crystal nucleation. Macromolecules. 2022;55:4899–4906. doi:10.1021/acs.macromol.2c00817
  • Zuo B, Zhou H, Davis MJ, et al. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys Rev Lett. 2019;122:217801. doi:10.1103/PhysRevLett.122.217801
  • Cai X, Liang C, Liu H, et al. Conformation and structure of ring polymers in semidilute solutions: a molecular dynamics simulation study. Polymer. 2022;253:124953. doi:10.1016/j.polymer.2022.124953
  • Wojnowska-Baryła I, Bernat K, Zaborowska M. Plastic waste degradation in landfill conditions: the problem with microplastics, and their direct and indirect environmental effects. Int J Environ Res Public Health. 2022;19:13223. doi:10.3390/ijerph192013223
  • Jung H, Shin G, Kwak H, et al. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023;320:138089. doi:10.1016/j.chemosphere.2023.138089
  • Wang C, Han H, Wu Y, et al. Nanocatalyzed upcycling of the plastic wastes for a circular economy. Coord Chem Rev. 2022;458:214422. doi:10.1016/j.ccr.2022.214422
  • Clisby N. Accurate estimate of the critical exponent ν for self-avoiding walks via a fast implementation of the pivot algorithm. Phys Rev Lett. 2010;104:055702. doi:10.1103/PhysRevLett.104.055702
  • Clisby N, Dünweg B., High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys Rev E. 2016;94:052102. doi:10.1103/PhysRevE.94.052102
  • Shirvanyants D, Panyukov S, Liao Q, et al. Long-range correlations in a polymer chain due to its connectivity. Macromolecules. 2008;41:1475–1485. doi:10.1021/ma071443r
  • Wittmer J, Meyer H, Baschnagel J, et al. Long range bond-bond correlations in dense polymer solutions. Phys Rev Lett. 2004;93:147801. doi:10.1103/PhysRevLett.93.147801
  • Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Clarendon; 1988. p. 10–12.
  • Mavrantzas VG, Boone TD, Zervopoulou E, et al. End-bridging Monte Carlo: a fast algorithm for atomistic simulation of condensed phases of long polymer chains. Macromolecules. 1999;32:5072–5096. doi:10.1021/ma981745g
  • Doxastakis M, Mavrantzas V, Theodorou D. Atomistic Monte Carlo simulation of cis-1, 4 polyisoprene melts. I. Single temperature end-bridging Monte Carlo simulations. J Chem Phys. 2001;115:11339–11351. doi:10.1063/1.1416490
  • Gestoso P, Nicol E, Doxastakis M, et al. Atomistic Monte Carlo simulation of polybutadiene isomers: cis-1, 4-polybutadiene and 1, 2-polybutadiene. Macromolecules. 2003;36:6925–6938. doi:10.1021/ma034033l
  • Ramos J, Vega JF, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J. 2018;99:298–331. doi:10.1016/j.eurpolymj.2017.12.027
  • Rasouli S, Moghbeli MR, Nikkhah SJ. A comprehensive molecular dynamics study of a single polystyrene chain in a good solvent. Current Applied Physics. 2018;18:68–78. doi:10.1016/j.cap.2017.10.010
  • Ding Y, Kisliuk A, Sokolov A. When does a molecule become a polymer? Macromolecules. 2004;37:161–166. doi:10.1021/ma035618i
  • Olowookere FV, Barbosa GD, Turner CH. Characterizing polyvinyl chloride interactions with additives in traditional and bioderived solvents. Ind Eng Chem Res. 2024;63:1109–1121. doi:10.1021/acs.iecr.3c03809
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi:10.1016/j.softx.2015.06.001
  • Ensing B, Tiwari A, Tros M, et al. On the origin of the extremely different solubilities of polyethers in water. Nat Commun. 2019;10:2893. doi:10.1038/s41467-019-10783-z
  • Mourey T, Slater L, Galipo R, et al. Size-exclusion chromatography of poly (ethylene 2, 6-naphthalate). J Chromatogr A. 2012;1256:129–135. doi:10.1016/j.chroma.2012.07.067
  • Demir T, Wei L, Nitta N, et al. Toward a long-chain perfluoroalkyl replacement: water and oil repellency of polyethylene terephthalate (PET) films modified with perfluoropolyether-based polyesters. ACS Appl Mater Interfaces. 2017;9:24318–24330. doi:10.1021/acsami.7b05799
  • Slobodian P, Lengálová A, Sáha P, et al. Poly (methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: composites electrical percolation threshold. J Reinf Plast Compos. 2007;26:1705–1712. doi:10.1177/0731684407081437
  • Mori S, Barth HG, Mori S, et al. High-temperature size exclusion chromatography. Berlin: Springer; 1999. p. 156–164.
  • Toy PH. Polystyrene. In: Charette A, Bode J, Rovis T, et al., editors. Encyclopedia of Reagents for Organic Synthesis (EROS). Hoboken: Wiley; 2005. p. 56–57.
  • Blackley DC. Synthetic rubbers: their chemistry and technology: their chemistry and technology. New York: Springer Science & Business Media; 2012. p. 87–89.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101. doi:10.1063/1.2408420
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190. doi:10.1063/1.328693
  • Mo J, Wang J, Wang Z, et al. Size and dynamics of a tracer ring polymer embedded in a linear polymer chain melt matrix. Macromolecules. 2022;55:1505–1514. doi:10.1021/acs.macromol.1c02388
  • Zifferer G. Monte Carlo simulation studies of the size and shape of linear and star-branched polymers embedded in the tetrahedral lattice. Macromol Theory Simul. 1999;8:433–462. doi:10.1002/(SICI)1521-3919(19990901)8:5<433::AID-MATS433>3.0.CO;2-C
  • Gkolfi E, Bačová P, Harmandaris V. Size and shape characteristics of polystyrene and poly (ethylene oxide) star polymer melts studied by atomistic simulations. Macromol Theory Simul. 2021;30:2000067. doi:10.1002/mats.202000067
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236. doi:10.1021/ja9621760
  • Dodda LS, Vilseck JZ, Tirado-Rives J, et al. 1.14* CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. J Phys Chem B. 2017;121:3864–3870. doi:10.1021/acs.jpcb.7b00272
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–10092. doi:10.1063/1.464397
  • Hess B, Bekker H, Berendsen HJ, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18:1463–1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Tribello GA, Bonomi M, Branduardi D, et al. PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014;185:604–613. doi:10.1016/j.cpc.2013.09.018
  • Weng L, Stott SL, Toner M. Molecular dynamics at the interface between ice and poly(vinyl alcohol) and ice recrystallization inhibition. Langmuir. 2018;34:5116–5123. doi:10.1021/acs.langmuir.7b03243
  • Flory PJ, Volkenstein M. Statistical mechanics of chain molecules. New York: Wiley Online Library; 1969.
  • Bhattacharjee SM, Giacometti A, Maritan A. Flory theory for polymers. J Phys: Condens Matter. 2013;25:503101. doi:10.1088/0953-8984/25/50/503101
  • Nyambura CW, Sampath J, Nance E, et al. Exploring structure and dynamics of the polylactic-co-glycolic acid–polyethylene glycol copolymer and its homopolymer constituents in various solvents using all-atom molecular dynamics. J Appl Polym Sci. 2022;139:e52732. doi:10.1002/app.52732
  • Sherck N, Webber T, Brown DR, et al. End-to-end distance probability distributions of dilute poly (ethylene oxide) in aqueous solution. J Am Chem Soc. 2020;142:19631–19641. doi:10.1021/jacs.0c08709
  • Tow GM, Maginn EJ. Fully atomistic molecular dynamics simulations of hydroxyl-terminated polybutadiene with insights into hydroxyl aggregation. Macromolecules. 2020;53:2594–2605. doi:10.1021/acs.macromol.9b02632
  • Rutledge G. Rotational isomeric state approach to the single-chain behavior of aromatic polyesters. Macromolecules. 1992;25:3984–3995. doi:10.1021/ma00041a022
  • Theodorou DN, Suter UW. Shape of unperturbed linear polymers: polypropylene. Macromolecules. 1985;18:1206–1214. doi:10.1021/ma00148a028
  • Dimitriyev MS, Chang Y-W, Goldbart PM, et al., Swelling thermodynamics and phase transitions of polymer gels. Nano Futures. 2019;3:042001. doi:10.1088/2399-1984/ab45d5
  • Yamada K, Matubayasi N. Chain-increment method for free-energy computation of a polymer with all-atom molecular simulations. Macromolecules. 2020;53:775–788. doi:10.1021/acs.macromol.9b01952

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.