70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Artemisinin derivatives as potential drug candidates against Mycobacterium tuberculosis: insights from molecular docking, MD simulations, PCA, MM/GBSA and ADMET analysis

, , , , &
Pages 717-728 | Received 21 Nov 2023, Accepted 19 Apr 2024, Published online: 02 May 2024

References

  • Kim PS, Swaminathan S. Ending TB: the world’s oldest pandemic. J Int AIDS Soc. 2021;24(3):10–11. doi:10.1002/jia2.25698
  • World Health Organization. World Health Organization Global Tuberculosis Report 2022. URL:https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.
  • World Health Organization. World Health Organization Global Tuberculosis Report 2021. https://www.who.int/publications/i/item/9789240037021.
  • Malmborg R, Mann G, Squire SB. A systematic assessment of the concept and practice of public-private mix for tuberculosis care and control. Int J Equity Health. 2011;10:1–9. doi:10.1186/1475-9276-10-49
  • Davies PDO. The role of DOTS in tuberculosis treatment and control. Am J Respir Med. 2003;2:203–209. doi:10.1007/BF03256649
  • Bocchino M, Matarese A, Sanduzzi A. Current treatment options for latent tuberculosis infection. J Rheumatol Suppl. 2014;91(0):71–77. doi:10.3899/jrheum.140105
  • Cinu TA, Sidhartha SK, Indira B, et al. Design, synthesis and evaluation of antitubercular activity of Triclosan analogues. Arab J Chem. 2019;12(8):3316–3323. doi:10.1016/j.arabjc.2015.09.003
  • Machova I, Snášel J, Dostál J, et al. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One. 2015;10(3):1–21. doi:10.1371/journal.pone.0120682
  • Marrero J, Rhee KY, Schnappinger D, et al. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci. 2010;107(21):9819–9824. doi:10.1073/pnas.1000715107
  • Zhou B, Yue JM. Natural products are the treasure pool for antimalarial agents. Natl Sci Rev. 2022;9(11):nwac112. doi:10.1093/nsr/nwac112
  • Ma N, Zhang Z, Liao F, et al. The birth of artemisinin. Pharmacol Ther. 2020;216:107658. doi:10.1016/j.pharmthera.2020.107658
  • Peter S, Jama S, Alven S, et al. Artemisinin and derivatives-based hybrid compounds: promising therapeutics for the treatment of cancer and Malaria. Molecules. 2021;26(24):7521. doi:10.3390/molecules26247521
  • Patel YS, Mistry N, Mehra S. Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis. 2019;115:146–153. doi:10.1016/j.tube.2019.03.004
  • Choi WH. Novel pharmacological activity of artesunate and artemisinin: their potential as anti-tubercular agents. J Clin Med. 2017;6(3):30. doi:10.3390/jcm6030030
  • Ali I, Rasheed MA, Cavalu S, et al. Identification of natural lead compounds against hemagglutinin-esterase surface glycoprotein in human coronaviruses investigated via MD simulation, principal component analysis, cross-correlation, H-bond plot and MMGBSA. Biomedicines. 2023;11(3):793. doi:10.3390/biomedicines11030793
  • Zhang B, Zhang X, Pearce R, et al. A new protocol for atomic-level protein structure modeling and refinement using low-to-medium resolution Cryo-EM density maps. J Mol Biol. 2020;432(19):5365–5377. doi:10.1016/j.jmb.2020.07.027
  • Halgren TA. Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem. 1996;17(5-6):520–552. doi:10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  • O'Boyle NM, Banck M, James CA, et al. Open babel: an open chemical toolbox. J Cheminform. 2011;3(33):1–14. doi:10.1186/1758-2946-3-33
  • Chauhan S, Srivastava M, Singh J. DocVSP (Docking-based virtual screening Perl-script) for automating and integrating AutoDock and SBDD. 2021;287–291. doi:10.52458/978-93-91842-08-6-28
  • Zhang S, Kumar K, Jiang X, et al. DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinformatics. 2008;9:1–4. doi:10.1186/1471-2105-9-126
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol: Methods Protoc. 2015: 1263:243–250. doi:10.1007/978-1-4939-2269-7_19
  • Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Yuan S, Chan HS, Hu Z. Using PyMOL as a platform for computational drug design. WIREs Comput Mol Sci. 2017;7(2):e1298. doi:10.1002/wcms.1298
  • Accelrys SI. Discovery studio modeling environment. San Diego (CA): Dassault Systèmes BIOVIA; 2017.
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng, Design Sel. 1995;8(2):127–134. doi:10.1093/protein/8.2.127
  • Pires DE, Kaminskas LM, Ascher DB. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. Comput Drug Discov Design. 2018;1762:271–284. doi:10.1007/978-1-4939-7756-7_14
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi:10.1038/srep42717
  • Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–341. doi:10.1016/j.ddtec.2004.11.007
  • Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. In Baylor University Medical Center Proceedings. Taylor & Francis. 2000;13(4):421–423. doi:10.1080/08998280.2000.11927719
  • Drwal MN, Banerjee P, Dunkel M, et al. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42(W1):W53–W58. doi:10.1093/nar/gku401
  • Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 2015;6(1):25661. doi:10.3402/nano.v6.25661
  • Cuya T, Goncalves AD, da Silva JA, et al. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study. J Biomol Struct Dyn. 2018 Oct 3;36(13):3444–3452. doi:10.1080/07391102.2017.1389307
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi:10.1002/jcc.20291
  • Huang J, MacKerell AD, Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135-2145. doi:10.1002/jcc.23354
  • Zoete V, Cuendet MA, Grosdidier A, et al. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32(11):2359–2368. doi:10.1002/jcc.21816
  • Lamichhane TR, Ghimire MP. Evaluation of SARS-CoV-2 main protease and inhibitor interactions using dihedral angle distributions and radial distribution function. Heliyon. 2021;7(10):1–9. doi:10.1016/j.heliyon.2021.e08220.
  • Gonçalves MA, Santos LS, Prata DM, et al. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: application to thermal and solvent effects of MRI probes. Theor Chem Acc. 2017;136:1–13. doi:10.1007/s00214-016-2037-z
  • Gonçalves MA, Gonçalves AS, Franca TC, et al. Improved protocol for the selection of structures from molecular dynamics of organic systems in solution: the value of investigating different wavelet families. J Chem Theory Comput. 2022;18(10):5810–5818. doi:10.1021/acs.jctc.2c00593
  • Pandey B, Grover A, Sharma P. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare). BMC Genom. 2018;19(1):1–16. doi:10.1186/s12864-017-4368-0
  • Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins: Struct, Funct Bioinform. 1993;17(4):412–425. doi:10.1002/prot.340170408
  • Shukla R, Singh TR. Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. J Biomol Struct Dyn. 2020;38(1):248–262. doi:10.1080/07391102.2019.1571947
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461. doi:10.1517/17460441.2015.1032936
  • Kumar P, Choonara YE, Pillay V. In silico affinity profiling of neuroactive polyphenols for post-traumatic calpain inactivation: a molecular docking and atomistic simulation sensitivity analysis. Molecules. 2015;20(1):135–168. doi:10.3390/molecules20010135
  • Srinivasan J, Cheatham TE, Cieplak P, et al. Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate−DNA helices. J Am Chem Soc. 1998;120(37):9401–9409. doi:10.1021/ja981844+
  • Ibrahim MA, Abdeljawaad KA, Roshdy E, et al. In silico drug discovery of SIRT2 inhibitors from natural source as anticancer agents. Sci Rep. 2023;13(1):1–16. doi:10.1038/s41598-023-28226-7
  • Gilson MK, Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct, Funct Bioinform. 1988;4(1):7–18. doi:10.1002/prot.340040104
  • Wang J, Hou T, Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr Comput-Aided Drug Des. 2006;2(3):287–306. doi:10.2174/157340906778226454
  • Kumari R, Kumar R. Open source drug discovery consortium, Lynn A. g_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–1962. doi:10.1021/ci500020m
  • Motamen S, Quinn RJ. Analysis of approaches to anti-tuberculosis compounds. ACS Omega. 2020;5(44):28529–28540. doi:10.1021/acsomega.0c03177
  • Pitaloka DAE, Ramadhan DSF, Arfan, et al. Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (InhA) inhibitors of Mycobacterium tuberculosis. Sci Pharm. 2021;89(2):20. doi:10.3390/scipharm89020020
  • Al-Khodairy FM, Khan MK, Kunhi M, et al. In Silico prediction of mechanism of Erysolin-induced apoptosis in human breast cancer cell lines. Am J Bioinform Res. 2013;3(3):62–71. doi:10.5923/j.bioinformatics.20130303.03
  • Kuzmanic A, Zagrovic B. Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophys J. 2010;98(5):861–871. doi:10.1016/j.bpj.2009.11.011
  • Sharma A, Vora J, Patel D, et al. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J Biomol Struct Dyn. 2022;40(7):3296–3311. doi:10.1080/07391102.2020.1846624
  • Saba A, Muhammad S, Khera RA, et al. Identification of halogen-based derivatives as potent inhibitors of estrogen receptor alpha of breast cancer: an in-silico investigation. J Comput Biophys Chem. 2022 Mar 4;21(02):181–205. doi:10.1142/S2737416522500090
  • Kumar KM, Anbarasu A, Ramaiah S. Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. Mol Biosyst. 2014;10(4):891–900. doi:10.1039/c3mb70537d
  • Khan RJ, Jha RK, Amera GM, et al. Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J Biomol Struct Dyn. 2021;39(8):2679–2692. doi:10.1080/07391102.2020.1753577
  • Saha RP, Bahadur RP, Chakrabarti P. Interresidue contacts in proteins and protein− protein interfaces and their use in characterizing the homodimeric interface. J Proteome Res. 2005;4(5):1600–1609. doi:10.1021/pr050118k
  • Hubbard RE, Haider MK. Hydrogen bonds in proteins: role and strength. eLS. 2010. doi:10.1002/9780470015902.a0003011.pub2
  • Siddiqui S, Ameen F, Kausar T, et al. Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: an in vitro and in silico approach. Spectrochimica Acta A Mol Biomol Spectrosc. 2021;249:119296. doi:10.1016/j.saa.2020.119296

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.