13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

NiTi shape memory alloys under nanoindentation with different atomic compositions

ORCID Icon
Received 16 Apr 2024, Accepted 11 Jun 2024, Published online: 19 Jun 2024

References

  • Petrini L, Migliavacca F. Biomedical applications of shape memory alloys. J Metall. 2011 May;2011:501483. doi: 10.1155/2011/501483
  • Williams EA, Shaw G, Elahinia M. Control of an automotive shape memory alloy mirror actuator. Mechatronics. 2010;20(5):527–534. doi: 10.1016/j.mechatronics.2010.04.002
  • Fang C, Yam MCH, Lam ACC, et al. Feasibility study of shape memory alloy ring spring systems for self-centring seismic resisting devices. Smart Mater Struct. 2015 Jun;24(7):075024. doi: 10.1088/0964-1726/24/7/075024
  • Grant D, Hayward V. Variable structure control of shape memory alloy actuators. IEEE Control Syst Mag. 1997;17(3):80–88. doi: 10.1109/37.588180
  • Morgan NB. Medical shape memory alloy applications-the market and its products. Mater Sci Eng A. 2004;378(1):16–23. doi: 10.1016/j.msea.2003.10.326European Symposium on Martensitic Transformation and Shape-Memory.
  • Mohd Jani J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Mater Des (1980–2015). 2014;56:1078–1113. doi: 10.1016/j.matdes.2013.11.084
  • Liu Y, Van Humbeeck J, Stalmans R, et al. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247(1):115–121. doi: 10.1016/S0925-8388(96)02572-8
  • Eggeler G, Hornbogen E, Yawny A, et al. Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A. 2004;378(1):24–33. doi: 10.1016/j.msea.2003.10.327European Symposium on Martensitic Transformation and Shape-Memory.
  • Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials. 2018;11(9):0.
  • Miller DA, Lagoudas DC. Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains. Smart Mater Struct. 2000 Oct;9(5):640–652. doi: 10.1088/0964-1726/9/5/308
  • Nemat-Nasser S, Guo WG. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech Mater. 2006;38(5):463–474. doi: 10.1016/j.mechmat.2005.07.004Shape Memory Alloys.
  • Liu Y, Xie Z, Van Humbeeck J, et al. Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater. 1998;46(12):4325–4338. doi: 10.1016/S1359-6454(98)00112-8
  • Adharapurapu RR, Jiang F, Vecchio KS, et al. Response of NiTi shape memory alloy at high strain rate: a systematic investigation of temperature effects on tension–compression asymmetry. Acta Mater. 2006;54(17):4609–4620. doi: 10.1016/j.actamat.2006.05.047
  • Chen X, Chen W, Ma Y, et al. Tension-compression asymmetry of single-crystalline and nanocrystalline NiTi shape memory alloy: an atomic scale study. Mech Mater. 2020;145:103402. doi: 10.1016/j.mechmat.2020.103402
  • Amigo N. Mechanical behavior of NixTi100-x shape memory alloys with void defects. Mater Today Commun. 2024;38:108422. doi: 10.1016/j.mtcomm.2024.108422
  • Kumar PK, Caer C, Atkinson G, et al. The influence of stress and temperature on the residual strain generated during pseudoelastic cycling of NiTi SMA wires. In: Ounaies Z and Seelecke SS, editors, Behavior and mechanics of multifunctional materials and composites 2011. Vol. 7978, International Society for Optics and Photonics, SPIE; 2011. p. 79781E. San Diego, California, United States
  • Wang B, Kang G, Kan Q, et al. Molecular dynamics simulations to the pseudo-elasticity of NiTi shape memory alloy nano-pillar subjected to cyclic compression. Comput Mater Sci. 2017;131:132–138. doi: 10.1016/j.commatsci.2017.01.045
  • Wang B, Kang G, Kan Q, et al. Atomistic study on the super-elasticity of nanocrystalline NiTi shape memory alloy subjected to a cyclic deformation. Comput Mater Sci. 2018;152:85–92. doi: 10.1016/j.commatsci.2018.05.033
  • Chen X, Liu T, Li R, et al. Molecular dynamics simulation on the shape memory effect and superelasticity in NiTi shape memory alloy. Comput Mater Sci. 2018;146:61–69. doi: 10.1016/j.commatsci.2018.01.026
  • Li P, Karaca HE, Cheng YT. Spherical indentation of NiTi-based shape memory alloys. J Alloys Compd. 2015;651:724–730. doi: 10.1016/j.jallcom.2015.07.280
  • Kumar S, Kumar IA, Marandi L, et al. Assessment of small-scale deformation characteristics and stress-strain behavior of NiTi based shape memory alloy using nanoindentation. Acta Mater. 2020;201:303–315. doi: 10.1016/j.actamat.2020.09.080
  • Laplanche G, Pfetzing-Micklich J, Eggeler G. Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys. Acta Mater. 2014;68:19–31. doi: 10.1016/j.actamat.2014.01.006
  • Ko WS, Jeon JB. Atomistic simulations on orientation dependent martensitic transformation during nanoindentation of NiTi shape-memory alloys. Comput Mater Sci. 2021;187:110127. doi: 10.1016/j.commatsci.2020.110127
  • Fazeli S, Izadifar M, Dolado JS, et al. Atomistic study of the effect of crystallographic orientation on the twinning and detwinning behavior of NiTi shape memory alloys. Comput Mater Sci. 2022;203:111080. doi: 10.1016/j.commatsci.2021.111080
  • Ko WS, Grabowski B, Neugebauer J. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys Rev B. 2015 Oct;92:134107. doi: 10.1103/PhysRevB.92.134107
  • Hua P, Wang B, Yu C, et al. Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation. Acta Mater. 2022;241:118358. doi: 10.1016/j.actamat.2022.118358
  • Chu K, Wang B, Li Q, et al. Grain size effect on the temperature-dependence of elastic modulus of nanocrystalline NiTi. J Alloys Compd. 2023;934:167907. doi: 10.1016/j.jallcom.2022.167907
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Thompson AP, Aktulga HM, Berger R, et al. Lammps – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171
  • Guo Y, Zeng X, Chen H, et al. Molecular dynamics modeling of the effect of nanotwins on the superelasticity of single-crystalline NiTi alloys. Adv Mater Sci Eng. 2017;Sep 2017:7427039.
  • Ataollahi S, Mahtabi MJ. Effects of precipitate on the phase transformation of single-crystal NiTi alloy under thermal and mechanical loads: a molecular dynamics study. Mater Today Commun. 2021;29:102859. doi: 10.1016/j.mtcomm.2021.102859
  • Larsen PM, Schmidt S, Schiøtz J. Robust structural identification via polyhedral template matching. Model Simul Mater Sci Eng. 2016 May;24(5):055007. doi: 10.1088/0965-0393/24/5/055007
  • Li B, Shen Y, An Q. Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy. Acta Mater. 2020;199:240–252. doi: 10.1016/j.actamat.2020.08.039
  • Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3d computer graphics. Comput Mater Sci. 1994;2(2):279–286. doi: 10.1016/0927-0256(94)90109-0
  • Stukowski A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Model Simul Mater Sci Eng. 2010;18(1):015012. doi: 10.1088/0965-0393/18/1/015012
  • Johnson KL. Contact mechanics. Cambridge, United Kingdom: Cambridge University Press; 1985.
  • Lilleodden ET, Zimmerman JA, Foiles SM, et al. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J Mech Phys Solids. 2003;51(5):901–920. doi: 10.1016/S0022-5096(02)00119-9
  • Lu Z, Chernatynskiy A, Noordhoek MJ, et al. Nanoindentation of Zr by molecular dynamics simulation. J Nucl Mater. 2015;467:742–757. doi: 10.1016/j.jnucmat.2015.10.042
  • Fu T, Peng X, Chen X, et al. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep. 2016 Oct;6(1):35665. doi: 10.1038/srep35665
  • Vu TN, Pham VT, Fang TH. Deformation mechanisms and mechanical properties of nanocrystalline CuxNi100-x alloys during indentation using molecular dynamics. Mater Today Commun. 2022;33:104282. doi: 10.1016/j.mtcomm.2022.104282
  • Peng C, Zeng F, Yuan B, et al. An md simulation study to the indentation size effect of polystyrene and polyethylene with various indenter shapes and loading rates. Appl Surf Sci. 2019;492:579–590. doi: 10.1016/j.apsusc.2019.06.173
  • Domínguez-Gutiérrez FJ, Papanikolaou S, Esfandiarpour A, et al. Nanoindentation of single crystalline Mo: atomistic defect nucleation and thermomechanical stability. Mater Sci Eng A. 2021;826:141912. doi: 10.1016/j.msea.2021.141912
  • Wang JP, Yue ZF, Wen ZX, et al. Orientation effects on the tensile properties of single crystal nickel with nanovoid: atomistic simulation. Comput Mater Sci. 2017;132:116–124. doi: 10.1016/j.commatsci.2017.02.024
  • Cagliero R, Barbato G, Maizza G, et al. Measurement of elastic modulus by instrumented indentation in the macro-range: uncertainty evaluation. Int J Mech Sci. 2015;101-102:161–169. doi: 10.1016/j.ijmecsci.2015.07.030
  • Li G, Yu T, Zhang N, et al. The effect of Ni content on phase transformation behavior of NiTi alloys: an atomistic modeling study. Comput Mater Sci. 2022;215:111804. doi: 10.1016/j.commatsci.2022.111804
  • Wu Z, Chen X, Fu T, et al. Molecular dynamics investigation of the influence of voids on the impact mechanical behavior of NiTi shape-memory alloy. Materials. 2021;14(14):0. doi: 10.3390/ma14144020
  • Chen X, Wu Z, Tang X, et al. Orientation-dependent shock compression behavior of non-porous/porous NiTi shape memory alloy: an atomic scale study. Mater Today Commun. 2022;30:103114. doi: 10.1016/j.mtcomm.2021.103114
  • Chen X, Lu S, Zhao Y, et al. Molecular dynamic simulation on nano-indentation of NiTi SMA. Mater Sci Eng A. 2018;712:592–602. doi: 10.1016/j.msea.2017.11.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.