0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of embedded-atom method (EAM) potential for Palladium–Barium alloy

ORCID Icon &
Received 23 Jan 2024, Accepted 29 Jun 2024, Published online: 16 Jul 2024

References

  • Donaev SB, Umirzakov BE, Mustafaeva NM. Emissivity of laser-activated Pd–Ba alloy. Tech Phys. 2019;64(10):1541–1543. doi:10.1134/S1063784219100074
  • Li S, Yan T, Li F, et al. Experimental study of millimeter magnetrons with cold cathodes. IEEE Trans Plasma Sci. 2016;44(8):1386–1390. doi:10.1109/TPS.2016.2585644
  • Polivnikova OV, Li IP. Pressed metal-alloy palladium-barium cathode. In: IEEE 14th International Vacuum Electronics Conference Proceedings, Paris, France. 2013; p. 1–2. Available from: https://doi.org/10.1109/IVEC.2013.6571169
  • Burkin EY, Sviridov VV, Chumerin PY. A pulsed magnetron microwave generator based on a solid-state switch. Instrum Exp Tech. 2021;64(3):370–375. doi:10.1134/S0020441221030167
  • Gartshore A, Kidd M, Joshi LT. Applications of microwave energy in medicine. Biosensors (Basel). 2021;11(4):96. doi:10.3390/BIOS11040096
  • Gold SH, Nusinovich GS. Review of high-power microwave source research. Rev Sci Instrum. 1997;68(11):3945–3974. doi:10.1063/1.1148382
  • White GO, Chen L, Patton CE, et al. High-power microwave pulse generator. Rev Sci Instrum. 1992;63(5):3156–3166. doi:10.1063/1.1142569
  • Yakoubi A, Baraka O, Bouhafs B. Structural and electronic properties of the laves phase based on rare earth type BaM2 (M = Rh, Pd, Pt). Results Phys. 2012;2:58–65. doi:10.1016/j.rinp.2012.06.001
  • Stein F, Leineweber A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. J Mater Sci. 2021;56:5321–5427. doi:10.1007/s10853-020-05509-2
  • Yang Q-S, Ruan B-B, Zhou M-H, et al. Superconducting properties of the C15-type laves phase ZrIr2 with an Ir-based kagome lattice. Chin Phys B. 2023;32(1):017402. doi:10.1088/1674-1056/aca3a2
  • Ohta T, Nakagawa Y, Kaneno Y, et al. Microstructures and mechanical properties of NbCr2 and ZrCr2 laves phase alloys prepared by powder metallurgy. J Mater Sci. 2003;38:657–665. doi:10.1023/A:1021807519728
  • Fellinger MR, Park H, Wilkins JW. Force-matched embedded-atom method potential for niobium. Phys Rev B Condens Matter Mater Phys. 2010;81(14):144119. doi:10.1103/PhysRevB.81.144119
  • Voter AF. Interatomic potentials for atomistic simulations. MRS Bull. 1996;21(2):17–19. doi:10.1557/S0883769400046248
  • Oluwajobi A, Chen X. The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining. Int J Autom Comput. 2011;8(3):326–332. doi:10.1007/s11633-011-0588-y
  • Torrens IM. Interatomic potentials. New York (NY): Academic Press; 1972.
  • Mayer B, Anton H, Bott E, et al. Ab-initio calculation of the elastic constants and thermal expansion coefficients of laves phases. Intermetallics (Barking). 2003;11(1):23–32. doi:10.1016/S0966-9795(02)00127-9
  • Becquart CS, Domain C, Legris A, et al. Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. J Nucl Mater. 2000;280(1):73–85. doi:10.1016/S0022-3115(00)00029-5
  • Kataria A, Verma A, Sethi SK, et al. Introduction to interatomic potentials/forcefields. In: Verma A, Rangappa SM, Ogata S, Siengchin S, editors. Forcefields for atomistic-scale simulations: materials and applications. Lecture Notes in Applied and Computational Mechanics, Vol. 99. Singapore: Springer; 2022. p. 21–49.
  • Daw MS, Chandross M. Simple parameterization of embedded atom method potentials for FCC metals. Acta Mater. 2023;248:118771. doi:10.1016/j.actamat.2023.118771
  • Subedi S, Morrissey LS, Handrigan SM, et al. The effect of many-body potential type and parameterisation on the accuracy of predicting mechanical properties of aluminium using molecular dynamics. Mol Simul. 2020;46(4):271–278. doi:10.1080/08927022.2019.1697439
  • Hijazi I, Zhang Y, Fuller R. A simple embedded atom potential for Pd-H alloys. Mol Simul. 2018;44(17):1371–1379. doi:10.1080/08927022.2018.1508840
  • Zhou LG, Huang H. Response embedded atom method of interatomic potentials. Phys Rev B Condens Matter Mater Phys. 2013;87(4):045431. doi:10.1103/PhysRevB.87.045431
  • Voter AF. The embedded-atom method. In: Westbrook JH, Fleischer RL, editors. Intermetallic compounds: principles. Chichester: John Wiley & Sons Ltd; 1994. p. 77–90.
  • Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter. 2009;21(39):395502. doi:10.1088/0953-8984/21/39/395502
  • Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for materials modelling with quantum espresso. J Phys: Condens Matter. 2017;29(46):465901. doi:10.1088/1361-648X/aa8f79
  • Thompson AP, Aktulga HM, Berger R, et al. Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. doi:10.1016/j.cpc.2021.108171
  • Andersson J-O, Helander T, Höglund L, et al. Thermo-Calc & dictra, computational tools for materials science. Calphad. 2002;26(2):273–312. doi:10.1016/S0364-5916(02)00037-8
  • Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B Condens Matter Mater Phys. 2001;63(22):224106. doi:10.1103/PhysRevB.63.224106
  • Smirnova DE, Kuksin AY, Starikov SV, et al. A ternary eam interatomic potential for U-Mo alloys with xenon. Model Simul Mater Sci Eng. 2013;21(3):035011. doi:10.1088/0965-0393/21/3/035011
  • Ercolessi F, Adams JB. Interatomic potentials from first-principles calculations: the force-matching method. Europhys Lett. 1994;26(8):583–588. doi:10.1209/0295-5075/26/8/005
  • Ernzerhof M, Scuseria GE. Assessment of the perdew-burke-ernzerhof exchange-correlation functional. J Chem Phys. 1999;110(11):5029–5036. doi:10.1063/1.478401
  • Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter Mater Phys. 1994;50(24):17953–17979. doi:10.1103/PhysRevB.50.17953
  • Corso AD. Pseudopotentials periodic table: from H to Pu. Comput Mater Sci. 2014;95:337–350. doi:10.1016/j.commatsci.2014.07.043
  • Brommer P. Development and test of interaction potentials for complex metallic alloys [Doctoral dissertation]. [Stuttgart, Germany]: University of Stuttgart; 2008. Available from: http://doi.org/10.18419/opus-4819
  • Brommer P, Gähler F. Potfit: effective potentials from ab initio data. Model Simul Mater Sci Eng. 2007;15(3):295–304. doi:10.1088/0965-0393/15/3/008
  • Cheng YQ, Cao AJ, Sheng HW, et al. Local order influences initiation of plastic flow in metallic glass: effects of alloy composition and sample cooling history. Acta Mater. 2008;56(18):5263–5275. doi:10.1016/j.actamat.2008.07.011
  • Xu S, Fan X, Gu C, et al. Molecular dynamics study of the tensile properties of gold nanocrystalline films irradiated by gallium ions. J Nucl Mater. 2023;581:154448. doi:10.1016/j.jnucmat.2023.154448
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002. doi:10.1063/1.4812323
  • Project TM. Materials data on BaPd2 by Materials Project [Internet]. United States; 2020 [cited 2023 Nov 28]. Available from: https://doi.org/10.17188/1192214
  • Mishin Y, Farkas D, Mehl MJ, et al. Interatomic potentials for Al and Ni from experimental data and ab initio calculations. Mater Res Soc Symp Proc. 1998;538:535–540. doi:10.1557/PROC-538-535
  • Powell MJD. A method for minimizing a sum of squares of non-linear functions without calculating derivatives. Comput J. 1965;7(4):303–307. doi:10.1093/comjnl/7.4.303
  • Hirel P. Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun. 2015;197:212–219. doi:10.1016/j.cpc.2015.07.012
  • Haynes WM, Lide DR, Bruno TJ, editors. Crc handbook of chemistry and physics. Boca Raton (FL): CRC Press; 2014.
  • Restrepo SE, Andric P. Abc-fire: accelerated bias-corrected fast inertial relaxation engine. Comput Mater Sci. 2023;218:111978. doi:10.1016/j.commatsci.2022.111978
  • Vailhé C, Farkas D. Shear faults and dislocation core structures in B2 CoAl. J Mater Res. 1997;12(10):2559–2570. doi:10.1557/JMR.1997.0340
  • Madsen GKH, Singh DJ. Boltztrap. a code for calculating band-structure dependent quantities. Comput Phys Commun. 2006;175(1):67–71. doi:10.1016/j.cpc.2006.03.007
  • Hasan S, San S, Baral K, et al. First-principles calculations of thermoelectric transport properties of quaternary and ternary bulk chalcogenide crystals. Materials. 2022;15(8):2843. doi:10.3390/ma15082843
  • Surblys D, Matsubara H, Kikugawa G, et al. Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys Rev E. 2019;99(5):051301. doi:10.1103/PhysRevE.99.051301
  • Boone P, Babaei H, Wilmer CE. Heat flux for many-body interactions: corrections to lammps. J Chem Theory Comput. 2019;15(10):5579–5587. doi:10.1021/acs.jctc.9b00252
  • Surblys D, Matsubara H, Kikugawa G, et al. Methodology and meaning of computing heat flux via atomic stress in systems with constraint dynamics. J Appl Phys. 2021;130:215104. doi:10.1063/5.0070930
  • Graef MD, McHenry ME. Structure of materials: an introduction to crystallography, diffraction, and symmetry. Cambridge: Cambridge University Press; 2007.
  • Coleman SP, Spearot DE, Capolungo L. Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Model Simul Mater Sci Eng. 2013;21(5):055020. doi:10.1088/0965-0393/21/5/055020
  • Stukowski A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Model Simul Mater Sci Eng. 2010;18(1):015012. doi:10.1088/0965-0393/18/1/015012
  • Duc NH, Brommer PE. Formation of 3d-moments and spin fluctuations in the rare earth-transition metal intermetallics. In: Duc NH, editor. Advanced magnetism and magnetic materials, volume 1 aspects of rare earth - transition metal intermetallics. Hanoi (VD): Vietnam National University Press; 2014. p. 99–264.
  • Wu J, Berland KM. Propagators and time-dependent diffusion coefficients for anomalous diffusion. Biophys J. 2008;95(4):2049–2052. doi:10.1529/biophysj.107.121608
  • Denkinger M, Mehrer H. Diffusion in the C15-type intermetallic laves phase NbCo2. Philos Mag A. 2000;80(5):1245–1263. doi:10.1080/01418610008212113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.