0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A molecular dynamics study on mechanical properties of polymer nanocomposites reinforced by two-dimensional nanosheets

, , &
Received 19 Feb 2024, Accepted 06 Jul 2024, Published online: 05 Aug 2024

References

  • Mazloom-Jalali A, Shariatinia Z. Molecular dynamics simulations on polymeric nanocomposite membranes designed to deliver pipobromane anticancer drug. J Nanostruct. 2020;10(2):279–295.
  • Sirotkin NA, et al. Experimental and computational investigation of polylactic acid/silver-NP nanocomposite with antimicrobial activity prepared by plasma in liquid. Plasma Process Polym. 2021;18(2):2000169. doi:10.1002/ppap.202000169
  • Ren Z, et al. Insights from molecular dynamics simulations for interfacial effects between polylactic acid and wood cell wall constituents. Compos A: Appl Sci Manuf. 2023;164:107310. doi:10.1016/j.compositesa.2022.107310
  • Hasheminejad K, Montazeri A. Enhanced interfacial characteristics in PLA/graphene composites through numerically-designed interface treatment. Appl Surf Sci. 2020;502:144150. doi:10.1016/j.apsusc.2019.144150
  • Rahman R, Haque A. Molecular dynamic simulation of graphene reinforced nanocomposites for evaluating elastic constants. Procedia Eng. 2013;56:789–794. doi:10.1016/j.proeng.2013.03.197
  • Khezerlou H, Tahmasebipour M. Molecular dynamic simulation of graphene-poly methyl methacrylate nano-composite. J Nanoelectron Optoe. 2014;9(5):580–583. doi:10.1166/jno.2014.1636
  • Li Y, Wang S, Wang Q. A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon N Y. 2017;111:538–545. doi:10.1016/j.carbon.2016.10.039
  • Chaurasia A, Jalan SK, Parashar A. An atomistic approach to study the dynamic and structural response in 2D nanofiller reinforced polyethylene nanocomposites under ultra-short shock pulse loading. Mech Mater. 2022;169:104305. doi:10.1016/j.mechmat.2022.104305
  • A. P. Awasthi, D. C. Lagoudas, and D. C. Hammerand, “Modeling of graphene–polymer interfacial mechanical behavior using molecular dynamics,” Model Simul Mater Sci Eng, vol. 17, no. 1, p. 015002, 2009. doi:10.1088/0965-0393/17/1/015002
  • Zhang Y, Zhang Q, Hou D, et al. Tuning interfacial structure and mechanical properties of graphene oxide sheets/polymer nanocomposites by controlling functional groups of polymer. Appl Surf Sci. 2020;504:144152. doi:10.1016/j.apsusc.2019.144152
  • Chaurasia A, Mulik RS, Parashar A. Deformation dynamics of h-BN reinforced polyethylene nanocomposite under shock/impact loading. Int J Mech Sci. 2022;225:107379. doi:10.1016/j.ijmecsci.2022.107379
  • Lu X, Detrez F, Yvonnet J, et al. Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations. Compos Sci Technol. 2021;213:108943. doi:10.1016/j.compscitech.2021.108943
  • Chaurasia A, Verma A, Parashar A, et al. Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C. 2019;123(32):20059–20070. doi:10.1021/acs.jpcc.9b05965
  • Lin F, Xiang Y, Shen H-S. Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites – A molecular dynamics simulation. Compos B Eng. 2017;111:261–269. doi:10.1016/j.compositesb.2016.12.004
  • Wang Y, Meng Z. Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites – effect of interlayer sliding within graphene sheets. Carbon N Y. 2021;177:128–137. doi:10.1016/j.carbon.2021.02.071
  • Nayebi P, Zaminpayma E. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with reax force field. Phys Lett A. 2016;380(4):628–633. doi:10.1016/j.physleta.2015.11.026
  • Liu J, Shen J, Zheng Z, et al. Revealing the toughening mechanism of graphene–polymer nanocomposite through molecular dynamics simulation. Nanotechnology. 2015;26(29):291003. doi:10.1088/0957-4484/26/29/291003
  • Kumar A, Sharma K, Dixit AR. A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. 2020;46(2):136–154. doi:10.1080/08927022.2019.1680844
  • Sun X, et al. Recent progress in graphene/polymer nanocomposites. Adv Mater. 2021;33(6):2001105. doi:10.1002/adma.202001105
  • Talapatra A, Datta D. Atomistic investigation of the interfacial mechanical characteristics of graphene reinforced thermoplastic polyurethane composite. Compos Inter. 2021;28(4):395–427. doi:10.1080/09276440.2020.1783943
  • Montazeri A, Javadpour J, Khavandi A, et al. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des. 2010;31(9):4202–4208. doi:10.1016/j.matdes.2010.04.018
  • Keramati Y, Ansari R, Hassanzadeh-Aghdam MK. Effect of graphene nano-sheets on the elastic and piezoelectric coefficients of unidirectional PZT-7A/polyimide hybrid composites. J Intell Mater Syst Struct. 2023: 1045389X–221147669.
  • Aliyev I, Hasanov S, Rasulov E, et al. Investigation of graphene/graphene oxide reinforced polyurethane nanocomposite: A molecular dynamics approach. Mater Today: Proc. 2021;42:A27–A35. doi:10.1016/j.matpr.2021.03.497
  • Wang M, Yan C, Hu N. Deformation and failure of graphene sheet and graphene-polymer interface. The international conference on fracture. 2013;13.
  • Güryel S, Walker M, Geerlings P, et al. Molecular dynamics simulations of the structure and the morphology of graphene/polymer nanocomposites. Phys Chem Chem Phys. 2017;19(20):12959–12969. doi:10.1039/C7CP01552F
  • Koloor SSR, Rahimian-Koloor S, Karimzadeh A, et al. Nano-level damage characterization of graphene/polymer cohesive interface under tensile separation. Polymers (Basel). 2019;11(9):1435. doi:10.3390/polym11091435
  • Moeini M, Barbaz Isfahani R, Saber-Samandari S, et al. Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol Simul. 2020;46(6):476–486. doi:10.1080/08927022.2020.1729983
  • Haghighi S, Ansari R, Ajori S. A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des. 2020;16:387–400. doi:10.1007/s10999-019-09472-y
  • Vidakis N, Petousis M, Savvakis K, et al. A comprehensive investigation of the mechanical behavior and the dielectrics of pure polylactic acid (PLA) and PLA with graphene (GnP) in fused deposition modeling (FDM). Int J Plast Technol. 2019;23(2):195–206. doi:10.1007/s12588-019-09248-1
  • Dehnou KH, Norouzi GS, Majidipour M. A review: studying the effect of graphene nanoparticles on mechanical, physical and thermal properties of polylactic acid polymer. RSC Adv. 2023;13(6):3976–4006. doi:10.1039/D2RA07011A
  • Bayer IS. Thermomechanical properties of polylactic acid-graphene composites: A state-of-the-art review for biomedical applications. Materials (Basel). 2017;10(7):748. doi:10.3390/ma10070748
  • Zeng Q, Du Z, Qin C, et al. Enhanced thermal, mechanical and electromagnetic interference shielding properties of graphene nanoplatelets-reinforced poly(lactic acid)/poly(ethylene oxide) nanocomposites. Mater Today Commun. 2020;25:101632. doi:10.1016/j.mtcomm.2020.101632
  • Mortazavi B, et al. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochim Acta. 2013;552:106–113. doi:10.1016/j.tca.2012.11.017
  • Zehir B, Boga C, Seyedzavvar M. Molecular dynamics simulation and experimental investigation of mechanical properties of calcium carbonate and graphene reinforced polylactic acid nanocomposites. J Mol Model. 2023;29(6):187. doi:10.1007/s00894-023-05598-1
  • B. W. Chieng, N. A. Ibrahim, W. M. Z. Wan Yunus, M. Z. Hussein, and Y. Y. Loo, “Effect of graphene nanoplatelets as nanofiller in plasticized poly(lactic acid) nanocomposites,” J Therm Anal Calorim, vol. 118, pp. 1551-1559, 2014. doi:10.1007/s10973-014-4084-9
  • Liu Z, Li J, Zhou C, et al. A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites. Int J Heat Mass Transf. 2018;126:353–362. doi:10.1016/j.ijheatmasstransfer.2018.05.149
  • Han Y, et al. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol. 2020;187:107944. doi:10.1016/j.compscitech.2019.107944
  • Li J, Li S. Thermal and dielectric properties of epoxy resin filled with double-layer surface-modified boron nitride nanosheets. Mater Chem Phys. 2021;274:125151. doi:10.1016/j.matchemphys.2021.125151
  • Haghighi S, Ansari R, Keramati Y. A molecular dynamics study on the vibrational behavior of perfect and defective hybrid carbon boron-nitride heteronanotubes. Diam Relat Mater. 2022;125:108990. doi:10.1016/j.diamond.2022.108990
  • Rasul MG, Kiziltas A, Arfaei B, et al. 2D boron nitride nanosheets for polymer composite materials. NPJ 2D Mater Appl. 2021;5(1):56. doi:10.1038/s41699-021-00231-2
  • Ahangari MG. Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study. RSC Adv. 2015;5(98):80779–80785. doi:10.1039/C5RA14292J
  • Vijayaraghavan V, Zhang L. Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials. 2018;8(7):546. doi:10.3390/nano8070546
  • Chaurasia A, Parashar A. Molecular dynamics study of anisotropic shock response in mono- and bicrystalline boron nitride nanosheets: implications for shock-resistant solid-state devices. ACS Appl Nano Mater. 2022;5(2):2787–2800. doi:10.1021/acsanm.1c04483
  • Chaurasia A, Parashar A. Experimental and atomistic insight on the thermal transport properties of h-BN/high density polyethylene nanocomposite. Int J Heat Mass Transf. 2021;170:121039. doi:10.1016/j.ijheatmasstransfer.2021.121039
  • Vijayaraghavan V, Zhang L. Tensile properties of boron nitride-carbon nanosheet-reinforced aluminum nanocomposites using molecular dynamics simulation. JOM. 2020;72(6):2305–2311. doi:10.1007/s11837-020-04031-9
  • Sedigh P, Zare A, Montazeri A. Evolution in aluminum applications by numerically-designed high strength boron-nitride/Al nanocomposites. Comput Mater Sci. 2020;171:109227. doi:10.1016/j.commatsci.2019.109227
  • Zhao S, Xue J. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J Phys D: Appl Phys. 2013;46(13):135303. doi:10.1088/0022-3727/46/13/135303
  • Kubota Y, Watanabe K, Tsuda O, et al. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science. 2007;317(5840):932–934. doi:10.1126/science.1144216
  • Liang Y, Qin H, Huang J, et al. Mechanical properties of boron nitride sheet with randomly distributed vacancy defects. Nanotechnol Rev. 2019;8(1):210–217. doi:10.1515/ntrev-2019-0019
  • Belaid H, et al. Boron nitride based nanobiocomposites: design by 3D printing for bone tissue engineering. ACS Appl Bio Mater. 2020;3(4):1865–1874. doi:10.1021/acsabm.9b00965
  • Rastegar S, Montazeri A. Atomistic insights into the toughening role of surface-treated boron nitride nanosheets in PLA-based nanocomposites. Eur Polym J. 2022;168:111071. doi:10.1016/j.eurpolymj.2022.111071
  • Guo W, et al. 3D printing of polylactic acid/boron nitride bone scaffolds: mechanical properties, biomineralization ability and cell responses. Ceram Int. 2023;49(15):25886–25898. doi:10.1016/j.ceramint.2023.05.137
  • Mortazavi B, Cuniberti G. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv. 2014;4(37):19137–19143. doi:10.1039/C4RA01103A
  • Kohestanian M, Sohbatzadeh Z, Rezaee S. Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC) / different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): A molecular dynamics simulation. Mater Today Commun. 2020;23:100922. doi:10.1016/j.mtcomm.2020.100922
  • Barfmal M, Montazeri A. MD-based design of SiC/graphene nanocomposites towards better mechanical performance. Ceram Int. 2017;43(18):17167–17173. doi:10.1016/j.ceramint.2017.09.140
  • Wang Y, Zhu Y, He Z, et al. Multiscale investigations into the fracture toughness of SiC/graphene composites: atomistic simulations and crack-bridging model. Ceram Int. 2020;46(18):29101–29110. doi:10.1016/j.ceramint.2020.08.082
  • M. Ghorbanzadeh Ahangari, A. Salmankhani, A. H. Imani, N. Shahab, and A. Hamed Mashhadzadeh, “Density functional theory study on the mechanical properties and interlayer interactions of multi-layer graphene: carbonic, silicon-carbide and silicene graphene-like structures,” Silicon, vol. 11, no. 3, pp. 1235-1246, 2019. doi:10.1007/s12633-018-9885-1
  • Petrus M, et al. Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sintering. Arch Civ Mech Eng. 2021;21(3):87. doi:10.1007/s43452-021-00236-0
  • Zheng X, Fang G, Pan Y, et al. Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery. J Power Sources. 2019;439:227081. doi:10.1016/j.jpowsour.2019.227081
  • Zheng G, et al. Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv Energy Mater. 2018;8(29):1801718. doi:10.1002/aenm.201801718
  • Wang Z, et al. Microspheres comprise Si nanoparticles modified with TiO2 and wrapped by graphene as high-performance anode for lithium-ion batteries. Appl Surf Sci. 2022;598:153790. doi:10.1016/j.apsusc.2022.153790
  • Chabi S, Kadel K. Two-dimensional silicon carbide: emerging direct band gap semiconductor. Nanomaterials. 2020;10(11):2226. doi:10.3390/nano10112226
  • Nguyen D-T, Le M-Q. Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study. Superlattices Microstruct. 2016;98:102–115. doi:10.1016/j.spmi.2016.08.003
  • Belarouci S, Ouahrani T, Benabdallah N, et al. Two-dimensional silicon carbide structure under uniaxial strains, electronic and bonding analysis. Comput Mater Sci. 2018;151:288–295. doi:10.1016/j.commatsci.2018.05.020
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi:10.1006/jcph.1995.1039
  • Mayo SL, Olafson BD, Goddard WA. Dreiding: a generic force field for molecular simulations. J Phys Chem. 1990;94(26):8897–8909. doi:10.1021/j100389a010
  • Eghbalian M, Ansari R, Haghighi S. Elastic properties of randomly dispersed functionalized silicon carbide nanotubes/polymer nanocomposites: combined multiscale molecular dynamics and finite element modeling. Silicon. 2023: 1–15.
  • Stuart SJ, Tutein AB, Harrison JA. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys. 2000;112(14):6472–6486. doi:10.1063/1.481208
  • Brenner DW, Shenderova OA, Harrison JA, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condensed Matter. 2002;14(4):783. doi:10.1088/0953-8984/14/4/312
  • Ajori S, Haghighi S, Ansari R. Molecular dynamics study on the effect of polymer physisorption on the thermal conductivity of cross-linked functionalized carbon nanotubes. Proc Inst Mech Eng Pt C J Mechan Eng Sci. 2022;236(7):3663–3671. doi:10.1177/09544062211042405
  • Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37(12):6991. doi:10.1103/PhysRevB.37.6991
  • Eghbalian M, Ansari R, Haghighi S. Molecular dynamics investigation of the mechanical properties and fracture behaviour of hydroxyl-functionalised carbon and silicon carbide nanotubes-reinforced polymer nanocomposites. Mol Simul. 2023: 1–12.
  • Eghbalian M, Ansari R, Rouhi S. Effects of geometrical parameters and functionalization percentage on the mechanical properties of oxygenated single-walled carbon nanotubes. J Mol Model. 2021;27:1–17. doi:10.1007/s00894-021-04946-3
  • Eghbalian M, Ansari R, Haghighi S. A combined molecular dynamics-finite element multiscale modeling to analyze the mechanical properties of randomly dispersed, chemisorbed carbon nanotubes/polymer nanocomposites. Mech Adv Mater Struct. 2022: 1–17.
  • S. Yang and J.-h. Lee, “Atomistic molecular dynamics simulation study on the mechanical behavior and dispersion of surface functionalized graphene/polypropylene nanocomposites,” Funct Compos Struct, vol. 1, no. 4, p. 045007, 2019. doi:10.1088/2631-6331/ab50ff
  • Wang C, Liu Y, Lan L, et al. Graphene wrinkling: formation, evolution and collapse. Nanoscale. 2013;5(10):4454–4461. doi:10.1039/c3nr00462g
  • Zhao S, Zhang Y, Yang J, et al. Improving interfacial shear strength between graphene sheets by strain-induced wrinkles. Carbon N Y. 2020;168:135–143. doi:10.1016/j.carbon.2020.06.054
  • Hart LF, Hertzog JE, Rauscher PM, et al. Material properties and applications of mechanically interlocked polymers. Nat Rev Mater. 2021;6(6):508–530. doi:10.1038/s41578-021-00278-z
  • Chen L, Sheng X, Li G, et al. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev. 2022;51(16):7046–7065. doi:10.1039/D2CS00202G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.