206
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Comparison of the Bone Regenerative Capacity of Three-Dimensional Uncalcined and Unsintered Hydroxyapatite/Poly-d/l-Lactide and Beta-Tricalcium Phosphate Used as Bone Graft Substitutes

ORCID Icon, , , , &

References

  • Jazayeri M, Shokrgozar MA, Haghighipour N, et al. Evaluation of mechanical and chemical stimulations on osteocalcin and Runx2 expression in mesenchymal stem cells. Mol Cell Biomech. 2015;12(3):197–213. doi: 10.3970/mcb.2015.012.197.
  • Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10.
  • Salgado AJ, Oliveira JT, Pedro AJ, Reis RL. Adult stem cells in bone and cartilage tissue engineering. Curr Stem Cell Res Ther. 2006;1(3):345–364. doi: 10.2174/157488806778226803.
  • Kanno T, Sukegawa S, Furuki Y, et al. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev. 2018;54(3):127–138. doi: 10.1016/j.jdsr.2018.03.003.
  • Kanno T, Tatsumi H, Karino M, et al. Applicability of an unsintered hydroxyapatite particles/poly-l-lactide composite sheet with tack fixation for orbital fracture reconstruction. J Hard Tissue Biol. 2016;25(3):329–334. doi: 10.2485/jhtb.25.329.
  • Sukegawa S, Kanno T, Koyama Y, et al. Precision of post-traumatic orbital reconstruction using unsintered hydroxyapatite particles/poly-l-lactide composite bioactive/resorbable mesh plate with and without navigation: a retrospective study. J Hard Tissue Biol. 2017;26(3):274–280. doi: 10.2485/jhtb.26.274.
  • Kanno T, Karino M, Yoshino A, et al. Feasibility of single folded unsintered hydroxyapatite particles/poly-l-lactide composite sheet in combined orbital floor and medial wall fracture reconstruction. J Hard Tissue Biol. 2017;26(2):237–244. doi: 10.2485/jhtb.26.237.
  • Sukegawa S, Kanno T, Kawai H, et al. Clinical report long-term bioresorption of bone fixation devices made from composites of unsintered hydroxyapatite particles and poly-l-lactide. J Hard Tissue Biol. 2015;24(2):219–224. doi: 10.2485/jhtb.24.219.
  • Sukegawa S, Kanno T, Manabe Y, et al. Biomechanical loading evaluation of unsintered hydroxyapatite/poly-l-lactide plate system in bilateral sagittal split ramus osteotomy. Materials (Basel). 2017;10(7):764. doi: 10.3390/ma10070764.
  • Sukegawa S, Kanno T, Shibata A, et al. Use of the bioactive resorbable plate system for zygoma and zygomatic arch replacement and fixation with modified crockett’s method for maxillectomy: a technical note. Mol Clin Oncol. 2017;7(1):47–50. doi: 10.3892/mco.2017.1269.
  • Sukegawa S, Kawai H, Nakano K, et al. Feasible advantage of bioactive/bioresorbable devices made of forged composites of hydroxyapatite particles and poly-L-lactide in alveolar bone augmentation: a preliminary study. Int J Med Sci. 2019;16(2):311–317. doi: 10.7150/ijms.27986.
  • Lewandrowski KU, Gresser JD, Wise DL, Trantolo DJ. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of poly (propylene glycol-co-fumaric acid)-based cement implants in rats. J Orthop Res. 2000;21:757–764. doi: 10.1016/S0142-9612(99)00179-9.
  • Hasegawa S, Tamura J, Neo M, et al. In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. J Biomed Mater Res. 2005;75(3):567–579. doi: 10.1002/jbm.a.30460.
  • Pina S, Ferreira JM. Bioresorbable plates and screws for clinical applications: a review. J Health Eng. 2012;3(2):243–260. doi: 10.1260/2040-2295.3.2.243.
  • Saeidlou S, Huneault MA, Li H, Park CB. Poly (lactic acid) crystallization. Prog Polym Sci. 2012;37(12):1657–1677. doi: 10.1016/j.progpolymsci.2012.07.005.
  • Hasegawa S, Neo M, Tamura J, et al. In vivo evaluation of a porous hydroxyapatite/poly-DL- lactide composite for bone tissue engineering. J Biomed Mater Res. 2007;81(4):930–938. doi: 10.1002/jbm.a.31109.
  • Bai YP, Kanno T, Tatsumi H, et al. Feasibility of a three-dimensional porous uncalcined and unsintered hydroxyapatite/poly-d/l-lactide composite as a regenerative biomaterial in maxillofacial surgery. Materials (Basel). 2018;11(10):2047. doi: 10.3390/ma11102047.
  • Müller P, Bulnheim U, Diener A, et al. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med. 2007;12(1):281–291. doi: 10.1111/j.1582-4934.2007.00103.x.
  • Seto S, Muramatsu K, Hashimoto T, et al. A new β-tricalcium phosphate with uniform triple superporous structure as a filling material after curettage of bone tumor. Anticancer Res. 2013;33(11):5075–5082. doi:http://ar.iiarjournals.org/content/33/11/5075.short.
  • Jensen SS, Broggini N, Hjørting‐Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, an organic bovine bone and β‐tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2006;17(3):237–243. doi: 10.1111/j.1600-0501.2005.01257.x.
  • Horch HH, Sader R, Pautke C, et al. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg. 2006;35(8):708–713. doi: 10.1016/j.ijom.2006.03.017.
  • Shikinami Y, Okazaki K, Saito M, et al. Bioactive and bioresorbable cellular cubic-composite scaffolds for use in bone reconstruction. J R Soc Interface. 2006;3(11):805–821. doi: 10.1098/rsif.2006.0144.
  • Jafari S, Morteza S, Hunger R. IHC optical density score: a new practical method for quantitative immunohistochemistry image analysis. Appl Immunohistochem Mol Morphol. 2017;25(1):e12–e13. doi: 10.1097/PAI.0000000000000370.
  • Ja ¨Hne B. Practical handbook on image processing for scientific applications. Boca Raton: CRC Press; 1997: 76–82.
  • Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23(4):291–299. PMID: 11531144.
  • Varghese F, Bukhari AB, Malhotra R, De A. IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 2014;9(5):e96801. doi: 10.1371/journal.pone.0096801.
  • Doube M, Kłosowski MM, Arganda-Carreras I, et al. BoneJ: free and extensible bone image analysis in image. J Bone. 2010;47(6):1076–1079. doi: 10.1016/j.bone.2010.08.023.
  • Dougherty R, Kunzelmann KH. Computing local thickness of 3D structures with ImageJ. Microsc Microanal. 2007;13(S02):1678–1679. doi: 10.1017/S1431927607074430.
  • Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185(1):67–75. doi: 10.1046/j.1365-2818.1997.1340694.x.
  • Marsell R, Einhorn TA. The biology of fracture healing. Injury. 1984;33(6):60–82. doi: 10.1016/j.injury.2011.03.031.
  • Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ. The growth plate chondrocyte and endochondral ossification. J Endocrinol. 2011;211(2):109–121. doi: 10.1530/JOE-11-0048.
  • Nishimura R, Wakabayashi M, Hata K, et al. Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J Biol Chem. 2012;287(40):33179–33190. doi: 10.1074/jbc.M111.337063.
  • Inada M, Wang Y, Byrne MH, et al. Critical ROLES FOR COLLAGENASE-3 (MMP13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci. 2004;101(49):17192–17197. doi: 10.1073/pnas.0407788101.
  • Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29. doi: 10.1016/S0092-8674(01)00622-5.
  • Mengshol JA, Vincenti MP, Brinckerhoff CE. IL-1 induces collagenase-3 (MMP-13) promoter activity in stably transfected chondrocytic cells: requirement for Runx-2 and activation by p38 MAPK and JNK pathways. Nucleic Acids Res. 2001;29(21):4361–4372. doi: 10.1093/nar/29.21.4361.
  • Kanno T, Takahashi T, Tsujisawa T, et al. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 2007;101(5):1266–1277. doi: 10.1002/jcb.21249.
  • Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000;275(6):4453–4459. doi: 10.1074/jbc.275.6.4453.
  • Deng Y, Wu S, Zhou H, et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 2013;22(16):2278–2286. doi: 10.1089/scd.2012.0686.
  • Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047. doi: 10.1152/physrev.1989.69.3.990.
  • Ketenjian AY, Arsenis C. Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage. Clin Orthop Relat Res. 1975;107:266–273. doi: 10.1097/00003086-197503000-00031.
  • Gavaia PJ, Simes DC, Ortiz-Delgado JB, et al. Osteocalcin and matrix Gla protein in zebrafish (Danio Rerio) and senegal sole (Solea Senegalensis): comparative gene and protein expression during larval development through adulthood. Gene Expr Patterns. 2006;6(6):637–652. doi: 10.1016/j.modgep.2005.11.010.
  • Viegas CSB, Simes DC, Williamson MK, et al. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications. J Biol Chem. 2013;24:jbc–M113. doi: 10.1074/jbc.M113.450213.
  • Hartmann C. Transcriptional networks controlling skeletal development. Curr Opin Genet Dev. 2009;19(5):437–443. doi: 10.1016/j.gde.2009.09.001.
  • Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38. doi: 10.1038/nrm3254.
  • Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering — part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev. 2013;19(4):308–326. doi: 10.1089/ten.teb.2012.0138.
  • Thompson EM, Matsiko A, Farrell E, Kelly DJ, O'Brien FJ. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration. J Tissue Eng Regen Med. 2015;9(8):889–902. doi: 10.1002/term.1918.
  • Akagi H, Ochi H, Soeta S, et al. A comparison of the process of remodeling of hydroxyapatite/poly-d/l-lactide and beta-tricalcium phosphate in a loading site. Biomed Res Int. 2015;2015:1. doi: 10.1155/2015/730105.
  • Kondo N, Ogose A, Tokunaga K, et al. Osteoinduction with highly purified b -tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials. 2006;27(25):4419–4427. doi: 10.1016/j.biomaterials.2006.04.016.
  • Xiao X, Wang W, Liu D, et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:9409. doi: 10.1038/srep09409.
  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the controls EMP-induced osteogenesis. J Biochem. 1997;121(2):317–324. doi: 10.1093/oxfordjournals.jbchem.a021589.
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;12(4):677–689. doi: 10.1016/j.cell.2006.06.044.
  • Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defect Res C. 2010;90(1):75–85. doi: 10.1002/bdrc.20173.
  • Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA. The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy. Biomaterials. 2013;34(2):413–421. doi: 10.1016/j.biomaterials.2012.09.052.
  • Maquet V, Boccaccini AR, Pravata L, Notingher I, JérôMe R, Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass®-filled polylactide foams. J Biomed Mater Res. 2003;66(2):335–346. doi: 10.1002/jbm.a.10587.
  • Sha J, Kanno T, Miyamoto K, Bai Y, Hideshima K, Matsuzaki Y. Application of a bioactive/bioresorbable three-dimensional porous uncalcined and unsintered hydroxyapatite/poly-d/l-lactide composite with human mesenchymal stem cells for bone regeneration in maxillofacial surgery: a pilot animal study. Materials. 2019;12(5):705. doi: 10.3390/ma12050705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.