469
Views
3
CrossRef citations to date
0
Altmetric
Original Research

The Protective Effects of Thymosin-β-4 in a Rat Model of Ischemic Acute Kidney Injury

, PhDORCID Icon, , PhD, , PhD, , PhD, , PhD, , PhD, , PhD, , PhD, , PhD, , PhD, , PhDORCID Icon, , PhD & , PhD show all
Pages 601-609 | Received 15 Aug 2019, Accepted 23 Sep 2019, Published online: 08 Nov 2019

References

  • Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007;11(2):R31. doi:10.1186/cc5713.
  • Bagshaw SM, Mortis G, Doig CJ, et al. One-year mortality in critically ill patients by severity of kidney dysfunction: a population-based assessment. Am J Kidney Dis. 2006;48(3):402–409. doi:10.1053/j.ajkd.2006.06.002.
  • Bell M, Martling CR. Long-term outcome after intensive care: can we protect the kidney? Crit Care 2007;11(4):147. doi:10.1186/cc5959.
  • Aksu U, Demirci C, Ince C. The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib Nephrol. 2011;174:119–128. doi:10.1159/000329249.
  • Hotchkiss RS, Strasser A, McDunn JE, et al. Cell death. N Engl J Med. 2009; 361(16):1570–1583. doi:10.1056/NEJMra0901217.
  • Aksu U, Guner I, Yaman OM, et al. Fluoxetine ameliorates imbalance of redox homeostasis and inflammation in an acute kidney injury model. J Physiol Biochem. 2014;70(4):925–934. doi:10.1007/s13105-014-0361-0.
  • Thakar CV, Zahedi K, Revelo MP, et al. Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest. 2005;115(12):3451–3459. doi:10.1172/JCI25461.
  • Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today 2011;16(17–18):762–778.
  • Caron A, Desrosiers RR, Langlois S, et al. Ischemia-reperfusion injury stimulates gelatinase expression and activity in kidney glomeruli. Can J Physiol Pharmacol. 2005;83(3):287–300. doi:10.1139/y05-011.
  • Novak KB, Le HD, Christison-Lagay ER, et al. Effects of metalloproteinase inhibition in a murine model of renal ischemia-reperfusion injury. Pediatr Res. 2010;67(3):257–262. doi:10.1203/PDR.0b013e3181ca0aa2.
  • Al'Qteishat A, Gaffney J, Krupinski J, et al. Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain 2006;129(Pt 8):2158–2176. doi:10.1093/brain/awl139.
  • Goldstein AL, Hannappel E, Kleinman HK. Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med. 2005;11(9):421–429. doi:10.1016/j.molmed.2005.07.004.
  • Philp D, Kleinman HK. Animal studies with thymosin beta, a multifunctional tissue repair and regeneration peptide. Ann NY Acad Sci. 2010;1194:81–86. doi:10.1111/j.1749-6632.2010.05479.x.
  • Malinda KM, Sidhu GS, Mani H, et al. Thymosin beta4 accelerates wound healing. J Invest Dermatol. 1999;113(3):364–368. doi:10.1046/j.1523-1747.1999.00708.x.
  • Young JD, Lawrence AJ, MacLean AG, et al. Thymosin beta 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nat Med. 1999;5(12):1424–1427. doi:10.1038/71002.
  • Sosne G, Qiu P, Christopherson PL, et al. Thymosin beta 4 suppression of corneal NFkappaB: a potential anti-inflammatory pathway. Exp Eye Res. 2007;84(4):663–669. doi:10.1016/j.exer.2006.12.004.
  • Badamchian M, Fagarasan MO, Danner RL, et al. Thymosin beta(4) reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock. Int Immunopharmacol. 2003;3(8):1225–1233. doi:10.1016/S1567-5769(03)00024-9.
  • Sosne G, Szliter EA, Barrett R, et al. Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res. 2002;74(2):293–299. doi:10.1006/exer.2001.1125.
  • Hinkel R, El-Aouni C, Olson T, et al. Thymosin beta4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 2008;117(17):2232–2240. doi:10.1161/CIRCULATIONAHA.107.758904.
  • Crockford D. Development of thymosin beta4 for treatment of patients with ischemic heart disease. Ann NY Acad Sci. 2007;1112:385–395. doi:10.1196/annals.1415.051.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Meth Enzymol. 1978;52:302–310. doi:10.1016/s0076-6879(78)52032-6.
  • Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992;202(2):384–389. doi:10.1016/0003-2697(92)90122-n.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “"antioxidant power": the FRAP assay”. Anal Biochem. 1996;239(1):70–76. doi:10.1006/abio.1996.0292.
  • Alamdari DH, Ghayour-Mobarhan M, Tavallaie S, et al. Prooxidant-antioxidant balance as a new risk factor in patients with angiographically defined coronary artery disease. Clin Biochem. 2008;41(6):375–380. doi:10.1016/j.clinbiochem.2007.12.008.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Lee HT, Ota-Setlik A, Fu Y, et al. Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 2004;101(6):1313–1324. doi:10.1097/00000542-200412000-00011.
  • Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261(6):1207–1214. doi:10.1097/SLA.0000000000000732.
  • Guner I, Yaman MO, Aksu U, et al. The effect of fluoxetine on ischemia-reperfusion after aortic surgery in a rat model. J Surg Res. 2014;189(1):96–105. doi:10.1016/j.jss.2014.02.033.
  • Yaman OM, Erman H, Guner I, et al. Remote myocardial injury: the protective role of fluoxetine. Can J Physiol Pharmacol. 2018;96(4):319–327. doi:10.1139/cjpp-2017-0383.
  • Aksu U, Ergin B, Bezemer R, et al. Scavenging reactive oxygen species using tempol in the acute phase of renal ischemia/reperfusion and its effects on kidney oxygenation and nitric oxide levels. Intensive Care Med Exp. 2015;3(1):57.
  • Weight SC, Furness PN, Nicholson ML. New model of renal warm ischaemia-reperfusion injury for comparative functional, morphological and pathophysiological studies. Br J Surg. 1998;85(12):1669–1673. doi:10.1046/j.1365-2168.1998.00851.x.
  • Sutton TA, Molitoris BA. Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol. 1998;18(5):490–497.
  • Fekete A, Vannay A, Ver A, et al. Sex differences in the alterations of Na(+), K(+)-ATPase following ischaemia-reperfusion injury in the rat kidney. J Physiol. 2004;555(2):471–480. doi:10.1113/jphysiol.2003.054825.
  • Gueler F, Rong S, Park JK, et al. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol. 2002;13(9):2288–2298. doi:10.1097/01.asn.0000026609.45827.3d.
  • Forget MA, Desrosiers RR, Beliveau R. Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can J Physiol Pharmacol. 1999;77(7):465–480.
  • Romanic AM, White RF, Arleth AJ, et al. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 1998;29(5):1020–1030. doi:10.1161/01.str.29.5.1020.
  • Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21(19):7724–7732. doi:10.1523/JNEUROSCI.21-19-07724.2001.
  • Hughes BG, Schulz R. Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol. 2014;109(4):424. doi:10.1007/s00395-014-0424-y.
  • Declèves AE, Caron N, Voisin V, et al. Synthesis and fragmentation of hyaluronan in renal ischaemia. Nephrol Dial Transplant 2012;27(10):3771–3781. Epub 2012 Apr 23 doi:10.1093/ndt/gfs098.
  • Wahl SM, Wahl LM, McCarthy JB. Lymphocyte-mediated activation of fibroblast proliferation and collagen production. J Immunol. 1978;121(3):942–946.
  • Hamerman D, Wood DD. Interleukin 1 enhances synovial cell hyaluronate synthesis. Proc Soc Exp Biol Med. 1984;177(1):205–210. doi:10.3181/00379727-177-1-rc1.
  • Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009; 7:97. doi:10.1186/1479-5876-7-97.
  • van der Poll T, Keogh CV, Guirao X, et al. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J Infect Dis. 1997;176(2):439–444. doi:10.1086/514062.
  • Rashid S, Nafees S, Siddiqi A, et al. Partial protection by 18beta glycrrhetinic acid against cisplatin induced oxidative intestinal damage in wistar rats: possible role of NFkB and caspases. Pharmacol Rep. 2017;69(5):1007–1013. doi:10.1016/j.pharep.2017.02.013.
  • Noiri E, Nakao A, Uchida K, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol. 2001;281(5):F948–F957. doi:10.1152/ajprenal.2001.281.5.F948.
  • Huttemann M, Helling S, Sanderson TH, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 2012;1817(4):598–609. doi:10.1016/j.bbabio.2011.07.001.
  • Okamoto T, Akaike T, Sawa T, et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem. 2001;276(31):29596–29602. doi:10.1074/jbc.M102417200.
  • Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol. 2003;23(6):511–521.
  • Kumar S, Gupta S. Thymosin beta 4 prevents oxidative stress by targeting antioxidant and anti-apoptotic genes in cardiac fibroblasts. PLoS One 2011;6(10):e26912. doi:10.1371/journal.pone.0026912.
  • Ho JH, Chuang CH, Ho CY, et al. Internalization is essential for the antiapoptotic effects of exogenous thymosin beta-4 on human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2007;48(1):27–33. doi:10.1167/iovs.06-0826.
  • Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol. 2007;376(1–2):1–43. doi:10.1007/s00210-007-0183-5.
  • Patel NS, Chatterjee PK, Chatterjee BE, et al. TEMPONE reduces renal dysfunction and injury mediated by oxidative stress of the rat kidney. Free Radic Biol Med. 2002;33(11):1575–1589. doi:10.1016/s0891-5849(02)01116-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.