246
Views
7
CrossRef citations to date
0
Altmetric
Original Research

TSG-6 Inhibits the Growth of Keloid Fibroblasts Via Mediating the TGF-β1/Smad Signaling Pathway

, , ORCID Icon &

References

  • Theoret C. Tissue engineering in wound repair: the three “R”s–repair, replace, regenerate. Vet Surg. 2009;38(8):905–913. doi:10.1111/j.1532-950X.2009.00585.x.
  • Alster TS, Tanzi EL. Hypertrophic scars and keloids: etiology and management. Am J Clin Dermatol. 2003;4(4):235–243. doi:10.2165/00128071-200304040-00003.
  • Gauglitz GG, Korting HC, Pavicic T, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1-2):113–125. doi:10.2119/molmed.2009.00153.
  • Bloemen MC, van der Veer WM, Ulrich MM, et al. Prevention and curative management of hypertrophic scar formation. Burns. 2009;35(4):463–475. doi:10.1016/j.burns.2008.07.016.
  • Kaji H. Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol. 2016;6(4):1873–1896. doi:10.1002/cphy.c160004.
  • Declerck PJ, Gils A. Three decades of research on plasminogen activator inhibitor-1: a multifaceted serpin. Semin Thromb Hemost. 2013; 39:356–364. doi:10.1055/s-0033-1334487.
  • Horrevoets AJ. Plasminogen activator inhibitor 1 (PAI-1): in vitro activities and clinical relevance. Br J Haematol. 2004;125(1):12–23. doi:10.1111/j.1365-2141.2004.04844.x.
  • Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–161. doi:10.1016/j.radonc.2010.09.002.
  • Flevaris P, Vaughan D. The role of plasminogen activator inhibitor type-1 in fibrosis. Semin Thromb Hemost. 2016;43(02):169–177. doi:10.1055/s-0036-1586228.
  • Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target?. Int J Radiat Oncol Biol Phys. 2000;47(2):277–290. doi:10.1016/S0360-3016(00)00435-1.
  • Cuomo JR, Sharma GK, Conger PD, et al. Novel concepts in radiation-induced cardiovascular disease. World J Cardiol. 2016;8(9):504–519. doi:10.4330/wjc.v8.i9.504.
  • Terrell TG, Working PK, Chow CP, et al. Pathology of recombinant human transforming growth factor-beta 1 in rats and rabbits. Int Rev Exp Pathol. 1993; 34 (Pt B):43–67.
  • Zugmaier G, Paik S, Wilding G, et al. Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res. 1991;51(13):3590–3594.
  • Bettinger DA, Yager DR, Diegelmann RF, et al. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg. 1996;98(5):827–833. doi:10.1097/00006534-199610000-00012.
  • Ashcroft GS, Yang X, Glick AB, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999;1(5):260–266. doi:10.1038/12971.
  • Flanders KC, Sullivan CD, Fujii M, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol. 2002;160(3):1057–1068. doi:10.1016/S0002-9440(10)64926-7.
  • Phan TT, Lim IJ, Aalami O, et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol. 2005;207(2):232–242. doi:10.1002/path.1826.
  • Yu H, Bock O, Bayat A, et al. Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg. 2006;59(3):221–229. doi:10.1016/j.bjps.2005.06.010.
  • Nakao A, Afrakhte M, Morn A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389(6651):631–635., doi:10.1038/39369.
  • Lee TH, Lee GW, Ziff EB, et al. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol. 1990;10(5):1982–1988. doi:10.1128/MCB.10.5.1982.
  • Klampfer L, Lee TH, Hsu W, et al. NF-IL6 and AP-1 cooperatively modulate the activation of the TSG-6 gene by tumor necrosis factor alpha and interleukin-1. Mol Cell Biol. 1994;14(10):6561–6569. doi:10.1128/MCB.14.10.6561.
  • Lee TH, Wisniewski HG, Vilcek J. A novel secretory tumor necrosis factor-inducible protein (TSG-6) is a member of the family of hyaluronate binding proteins, closely related to the adhesion receptor CD44. J Cell Biol. 1992;116(2):545–557. doi:10.1083/jcb.116.2.545.
  • Wang H, Chen Z, Li X, et al. TSG-6 treatment promoted apoptosis in human fibroblasts of pathological scar. Cell Mol Biol (Noisy-le-grand). 2016; 62:33–37. doi:10.14715/cmb/2019.65.5.6.
  • Honardoust D, Ding J, Varkey M, et al. Deep dermal fibroblasts refractory to migration and decorin-induced apoptosis contribute to hypertrophic scarring. J Burn Care Res. 2012;33(5):668–677. doi:10.1097/BCR.0b013e31824088e3.
  • Russell SB, Trupin KM, Rodriguez-Eaton S, et al. Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Proc Natl Acad Sci U S A. 1988;85(2):587–591. doi:10.1073/pnas.85.2.587.
  • Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci. 2003;116(10):1863–1873. doi:10.1242/jcs.00407.
  • Oh JY, Roddy GW, Choi H, et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci U S A. 2010;107(39):16875–16880. doi:10.1073/pnas.1012451107.
  • Milner CM, Higman VA, Day AJ. TSG-6: a pluripotent inflammatory mediator?. Biochem Soc Trans. 2006;34(3):446–450. doi:10.1042/BST0340446.
  • Choi H, Lee RH, Bazhanov N, et al. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011;118(2):330–338. doi:10.1182/blood-2010-12-327353.
  • Qi Y, Jiang D, Sindrilaru A, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol. 2014;134(2):526–537. doi:10.1038/jid.2013.328.
  • Wang H, Chen Z, Li XJ, et al. Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model. Eur J Pharmacol. 2015; 751:42–49. doi:10.1016/j.ejphar.2015.01.040.
  • Huse M, Chen YG, Massague J, et al. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell. 1999;96(3):425–436. doi:10.1016/S0092-8674(00)80555-3.
  • Hsu YC, Chen MJ, Yu YM, et al. Suppression of TGF-beta1/SMAD pathway and extracellular matrix production in primary keloid fibroblasts by curcuminoids: its potential therapeutic use in the chemoprevention of keloid. Arch Dermatol Res. 2010;302(10):717–724. doi:10.1007/s00403-010-1075-y.
  • Lakos G, Takagawa S, Chen SJ, et al. Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol. 2004;165(1):203–217. doi:10.1016/S0002-9440(10)63289-0.
  • Sun Y, Zhu F, Yu X, et al. Treatment of established peritoneal fibrosis by gene transfer of Smad7 in a rat model of peritoneal dialysis. Am J Nephrol. 2009;30(1):84–94. doi:10.1159/000203362.
  • Tan KT, McGrouther DA, Day AJ, et al. Characterization of hyaluronan and TSG-6 in skin scarring: differential distribution in keloid scars, normal scars and unscarred skin. J Eur Acad Dermatol Venereol. 2011;25(3):317–327. doi:10.1111/j.1468-3083.2010.03792.x.
  • Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114(Pt 24):4359–4369.
  • Wang Z, Gao Z, Shi Y, et al. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J Plast Reconstr Aesthet Surg. 2007;60(11):1193–1199. doi:10.1016/j.bjps.2006.05.007.
  • Tuan TL, Wu H, Huang EY, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. Am J Pathol. 2003;162(5):1579–1589. doi:10.1016/S0002-9440(10)64292-7.
  • Tuan TL, Zhu JY, Sun B, et al. Elevated levels of plasminogen activator inhibitor-1 may account for the altered fibrinolysis by keloid fibroblasts. J Invest Dermatol. 1996;106(5):1007–1011. doi:10.1111/1523-1747.ep12338552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.