Publication Cover
High Pressure Research
An International Journal
Volume 34, 2014 - Issue 1
391
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Formation and properties of rocksalt-type AlN and implications for high pressure phase relations in the system Si–Al–O–N

, , , , , , & show all
Pages 22-38 | Received 15 Jan 2013, Accepted 15 Oct 2013, Published online: 18 Nov 2013

References

  • Riley F. Silicon nitride and related materials. J Am Ceram Soc. 2000;83:246–265.
  • Metselaar R, Yan D. Terminology for compounds in the Si–Al–O–N system. J Eur Ceram Soc. 1998;18:183–184. doi: 10.1016/S0955-2219(97)00114-3
  • Dupuis J, Fourmond E, Ballutaud D, Bererd N, Lemiti M. Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition. Thin Solid Films. 2010;519:1325–1333. doi: 10.1016/j.tsf.2010.09.036
  • Brunner DG, Ceramics in power electronics. CFI-Ceram Forum Int. 2010;87:E25–E27.
  • Grandusky JR, Zhong Z, Chen J, Leung C, Schowalter LJ. Manufacturability of high power ultraviolet-C light emitting diodes on bulk aluminum nitride substrates. Solid-State Electron. 2012;78:127–130. doi: 10.1016/j.sse.2012.05.056
  • Goldman LM, Twedt R, Balasubramanian S, Sastri S. ALON optical ceramic transparencies for window, dome, and transparent armor applications. Proc SPIE 2011;8016: 801608, 1–14.
  • Zeuner M, Pagano S, Schnick W. Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew Chem Int Ed. 2011;50:7754–7775. doi: 10.1002/anie.201005755
  • T. Ekström, Nygren M. SiAlON ceramics. J Am Ceram Soc. 1992;75:259–276. doi: 10.1111/j.1151-2916.1992.tb08175.x
  • Chen IW, Shuba R. Structure and properties of sialon ceramics. In: Buschow KHJ, Cahn R, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, editors. Encyclopedia of materials: science and technology. Amsterdam: Elsevier; 2001. p. 8471–8476.
  • Raju C, Verma S, Sahu M, Jain P, Choudary S. Silicon nitride/SiAlON ceramics – a review. Indian J Eng Mater. S. 2001;8:36–45.
  • Umemoto K, Wentzcovitch RM. Prediction of an U2S3-type polymorph of Al2O3 at 3.7 Mbar. Proc Nat Acad Sci USA. 2008;105:6526–6530. doi: 10.1073/pnas.0711925105
  • Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, FueßH, Kroll P, Boehler R. Synthesis of cubic silicon nitride. Nature 1999;400:340–342. doi: 10.1038/22493
  • Zerr A, Riedel R, Sekine T, Lowther J, Ching W, Tanaka I. Recent advances in new hard high-pressure nitrides. Adv Mater. 2006;18:2933–2948. doi: 10.1002/adma.200501872
  • Schwarz M, Miehe G, Zerr A, Kroke E, Poe B, Fuess H, Riedel R. Spinel-Si3N4: Multi-anvil press synthesis and structural refinement. Adv Mater. 2000;12:883–887. doi: 10.1002/1521-4095(200006)12:12<883::AID-ADMA883>3.0.CO;2-C
  • Jiang J, Stȧhl K, Berg R, Frost D, Zhou T, Shi P. Structural characterisation of cubic silicon nitride. Europhys Lett. 2000;51:62–67. doi: 10.1209/epl/i2000-00337-8
  • Soignard E, Somayazulu M, Dong JJ, Sankey O, McMillan P. High pressure-high temperature synthesis and elasticity of the cubic nitride spinel γ-Si3N4. J Phys Condens Matter. 2001;13:557–563. doi: 10.1088/0953-8984/13/4/302
  • Sekine T, Kobayashi T. Phase transitions in ceramics under shock wave compression. New Diam Front C Tech. 2003;13:153–160.
  • Schwarz M, High pressure synsthesis of novel hard materials: spinel-Si3N4 and derivates. PhD Thesis, TU Darmstadt. Kassel University Press; 2003.
  • Deribas A, Silvestrov V, Yunoschev A. Shock-wave synthesis of cubic phase of silicon nitride Si3N4. Mater Sci Forum. 2004;465–466.
  • Yunoshev A. Shock-wave synthesis of cubic silicon nitride. Combust, Explos Shock Waves. 2004;40:370–373. doi: 10.1023/B:CESW.0000028951.97322.d9
  • Liu YS, Yao H, Zhang FP, He HL, Tang JY. Experimental research on shock synthesis of cubic silicon nitride. J Inorg Mater. 2007;22:159–162.
  • Blank V, Deribas A, Lvova N, Bagramov R, Kulnitskiy B, Perezhogin I, Prokhorov V, Silvestrov V, Yunoschev A. Properties of cubic Si3N4 obtained by shock synthesis. Mater Sci Forum. 2008;566:129–134. doi: 10.4028/www.scientific.net/MSF.566.129
  • Yunoshev AS, Synthesis of cubic silicon nitride in a cylindrical recovery capsule. Combust, Explos Shock Waves. 2010;46:604–608. doi: 10.1007/s10573-010-0080-y
  • Yao H, Xu Q, Tang J. Synthesis and stability of cubic silicon nitride. Adv Mater Res. 2009;79–82:1467–1470. doi: 10.4028/www.scientific.net/AMR.79-82.1467
  • Schlothauer T, Schwarz M, Moldovan O, Brendler E, Möckel R, Kroke E, Heide G. Shock wave synthesis of oxygen-bearing spinel-type silicon nitride γ-Si3(O,N)4 in the pressure range from 30 to 72 GPa with high purity, in Minerals as Advanced Materials II. In: S. KrivovichevS. Krivovichev, editor. Minerals as advanced materials II. Berlin / Heidelberg: Springer; 2011, p. 33–34.
  • Jiang J, Kragh F, Frost D, Stȧhl K, Lindelov H. Hardness and thermal stability of cubic silicon nitride. J Phys: Condens Matter. 2001;13:L515–L519. doi: 10.1088/0953-8984/13/22/111
  • Zerr A, Kempf M, Schwarz M, Kroke E, Göken M, Riedel R. Elastic moduli and hardness of cubic silicon nitride. J Am Ceram Soc. 2002;85:86–90. doi: 10.1111/j.1151-2916.2002.tb00044.x
  • Tanaka I, Oba F, Sekine T, Ito E, Kubo A. Hardness of cubic silicon nitride. J Mater Res. 2002;17:731–733.
  • Jiang J, Lindelov H, Gerward L, Stȧhl K, Recio J, Mori-Sanchez P, Carlson S, Mezouar M, Dooryhee E, Fitch A, Frost D. Compressibility and thermal expansion of cubic silicon nitride. Phys Rev B. 2002;65: 16202(1–4).
  • Hintzen H, Hendrix M, Wondergemb H, Fanga C, Sekine T, Withde G. Thermal expansion of cubic Si3N4 with the spinel structure. J Alloy Compd. 2003;351:40–42. doi: 10.1016/S0925-8388(02)01065-4
  • Paszkowicz W, Minikayev R, Piszora P, Knapp M, Bähtz C, Recio JM, Marques M, Mori-Sanchez P, Gerward L, Jiang JZ. Thermal expansion of spinel-type Si3N4. Phys Rev B. 2004;69: 052103,4. doi: 10.1103/PhysRevB.69.052103
  • Sekine T, Mitsuhashi T. High-temperature metastability of cubic spinel Si3N4. Appl Phys Lett. 2001;79:2719–2721. doi: 10.1063/1.1412826
  • Tanaka I, Mizoguchi T, Sekine T, He H, Kimoto K, Kobayashi T, Mo S, Ching W. Electron energy loss near-edge structures of cubic Si3N4. Appl Phys Lett. 2001;78:2134–2136. doi: 10.1063/1.1360232
  • Leitch S, Moewes A, Ouyang L, Ching W, Sekine T. Properties of non-equivalent sites and bandgap of spinel-phase silicon nitride. J Phys: Condens Matter. 2004;16:6469–6476. doi: 10.1088/0953-8984/16/36/012
  • Ching W, Mo SD, Ouyang L. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4. Phys Rev B. 2001;64: 245110,1–7.
  • Oba F, Tatsumi K, Tanaka I, Adachi H. Effective doping in cubic Si3N4 and Ge3N4: a first-principles study. J Am Ceram Soc. 2002;85:97–100. doi: 10.1111/j.1151-2916.2002.tb00046.x
  • Togo A, Kroll P. First-principles lattice dynamics calculations of the phase boundary between β-Si3N4 and γ-Si3N4 at elevated temperatures and pressures. J Comput Chem. 2008;29:2255–2259. doi: 10.1002/jcc.21038
  • Wang LG, Sun JX, Yang W, Tian RG. Analytic equation of state and thermodynamic properties for α-, β-, and γ-Si3N4 based on analytic mean field approach. Acta Phys Pol A. 2008;114:807–818.
  • Xu B, Dong J, McMillan PF, Shebanova O, Salamat A. Equilibrium and metastable phase transitions in silicon nitride at high pressure: a first-principles and experimental study. Phys Rev B. 2011;84: 014113:1–16.
  • Kondo K, Sawaoka A, Sato K, Ando M. Shock compression and phase transformation of AlN and BP. AIP Conf Proc. 1982;78:325–329.
  • Vollstädt H, Ito E, Akaishi M, Akimoto S, Fukunaga O. High pressure synthesis of rocksalt type of AlN. Proc Japan Acad B. 1990;66:7–9. doi: 10.2183/pjab.66.7
  • Van Camp P, Van Doren V, Devreese J. High-pressure properties of wurtzite- and rocksalt-type aluminium nitride. Phys Rev B. 1992;44:9056–9059. doi: 10.1103/PhysRevB.44.9056
  • Ueno M, Onodera A, Shimomura O, Takemura K. X-ray observation of the structural phase transition of aluminum nitride under high pressure. Phys Rev B. 1992;45:10123–10126. doi: 10.1103/PhysRevB.45.10123
  • Munoz A, Kunc K. Structure and static properties of indium nitride at low and moderate pressures. J Phys: Condens Matter. 1993;5:6015–6022. doi: 10.1088/0953-8984/5/33/010
  • Corkill J, Rubio A, Cohen M. Cation dependence of the electronic structure of III-V nitrides. J Phys: Condens Matter. 1994;6:963–976. doi: 10.1088/0953-8984/6/5/006
  • Xia Q, Xia H, Ruoff A. Pressure-induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition. J Appl Phys. 1993;73:8198–8200. doi: 10.1063/1.353435
  • Dandekar D, Abbate A, Frankel J. Equation of state of aluminum nitride and its shock response. J Appl Phys. 1994;76:4077–4085. doi: 10.1063/1.357357
  • Veprek S, Jilek M. Superhard nanocomposite coatings. From basic science toward industrialization. Pure Appl Chem. 2002;74:475–481. doi: 10.1351/pac200274030475
  • Wüstefeld C, Rafaja D, Dopita M, Motylenko M, Baehtz C, Michotte C, Kathrein M. Decomposition kinetics in Ti1−xAlxN coatings as studied by in-situ X-ray diffraction during annealing. Surf Coat Technol. 2011;206:1727–1734. doi: 10.1016/j.surfcoat.2011.09.041
  • Norrby N, Lind H, Parakhonskiy G, Johansson MP, Tasnádi F, Dubrovinsky LS, Dubrovinskaia N, Abrikosov IA, Odén M. High pressure and high temperature stabilization of cubic AlN in Ti0.60Al0.40N. J Appl Phys. 2013;113: 053515–053515–6. doi: 10.1063/1.4790800
  • Mashimo T, Uchino M, Nakamura A, Kobayashi T, Takawasa E, Sekine T, Noguchi Y, Hikosaka H, Fukuoka K, Syono Y. Yield properties, phase transition, and equation of state of aluminum nitride (AlN) under shock compression up to 150 GPa. J Appl Phys. 1999;86:6710–6716. doi: 10.1063/1.371749
  • Uehara S, Masamoto T, Onodera A, Ueno M, Shimomura O, Takemura K. Equation of state of the rocksalt phase of III–V nitrides to 72 GPa or higher. J Phys Chem Solids. 1997;58:2093–2099. doi: 10.1016/S0022-3697(97)00150-9
  • Bayarjargal L, Winkler B. High (pressure, temperature) phase diagrams of ZnO and AlN from second harmonic generation measurements. Appl Phys Lett. 2012;100.
  • Keller K, Schlothauer T, Schwarz M, Heide G, Kroke E. Shock wave synthesis of aluminium nitride with rocksalt structure. High Pressure Res. 2012;32:23–29. doi: 10.1080/08957959.2011.642990
  • Wang Z, Tait K, Zhao Y, Schiferl D, Zha C, Uchida H, Downs R. Size-induced reduction of transition pressure and enhancement of bulk modulus of AlN Nanocrystals. J Phys Chem B. 2004;108:11506–11508. doi: 10.1021/jp048396e
  • Shen LH, Li XF, Ma YM, Yang KF, Lei WW, Cui QL, Zou GT. Pressure-induced structural transition in AlN nanowires. Appl Phys Lett. 2006;89: 141903, 1–3.
  • Shatskiy A, Borzdov YM, Yamazaki D, Litasov KD, Katsura T, Palyanov YN. Aluminum nitride crystal growth from an Al–N system at 6.0 GPa and 1800°C. Cryst Growth Des. 2010;10:2563–2570. doi: 10.1021/cg901519s
  • Limpijumnong S, Lambrecht R. Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN. Phys Rev Lett. 2001;86:91–94. doi: 10.1103/PhysRevLett.86.91
  • Zhang R, Sheng S, Veprek S. Mechanism of the B3 to B1 transformation in cubic AlN under uniaxial stress. Phys Rev B. 2007;76:1–5.
  • Zhang RF, Veprek S. Deformation paths and atomistic mechanism of B4 → B1 phase transformation in aluminium nitride. Acta Mater. 2009;57:2259–2265. doi: 10.1016/j.actamat.2009.01.028
  • Siegel A, Parlinski K, Wdowik UD. Ab initio calculation of structural phase transitions in AlN crystal. Phys Rev B. 2006;74: 104116,1–6. doi: 10.1103/PhysRevB.74.104116
  • Baroni S, Giannozzi P, Isaev E. Density-functional perturbation theory for quasi-harmonic calculations. Rev Mineral Geochem. 2010;71:39–57. doi: 10.2138/rmg.2010.71.3
  • Yu YG, Wentzcovitch RM, Angel RJ. First principles study of thermodynamics and phase transition in low-pressure (P21/c) and high-pressure (C2/c) clinoenstatite MgSiO3. J Geophys Res. 2010;115:1–10.
  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Carlo Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Stefano de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Lorenzo Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P and Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter. 2009;21: 395502, 1–19. doi: 10.1088/0953-8984/21/39/395502
  • Fuchs M, Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput Phys Commun. 1999;119:67–98. doi: 10.1016/S0010-4655(98)00201-X
  • Krukowski S, Leszczynski M, Porowski S. Thermal properties of the group III nitrides. In: Edgar JH, Strite S, Akasaki I, Amano H, Wetzel C, editors. Properties, processing and applications of gallium nitride and related semiconductors. London: INSPEC; 1999; p. 21–28.
  • Figge S, Kröncke H, Hommel D, Epelbaum BM. Temperature dependence of the thermal expansion of AlN. Appl Phys Lett. 2009;94: 101915, 1–3. doi: 10.1063/1.3089568
  • Iwanaga H, Kunishige A, Takeuch S. Anisotropic thermal expansion in wurtzite-type crystals. J Mater Sci. 2000;35:2451. doi: 10.1023/A:1004709500331
  • Cai J, Chen N. Microscopic mechanism of the wurtzite-to-rocksalt phase transition of the group-III nitrides from first principles. Phys Rev B. 2007;75: 134109, 1–12.
  • Keller K, Schlothauer T, Schwarz M, Brendler E, Galonska K, Heide G, Kroke E. Properties of shock-synthesized rocksalt-aluminium nitride. Process Properties Adv Ceramics Composites IV: Ceramic Trans 2012;234:305–311. doi: 10.1002/9781118491867.ch31
  • Huppertz H. Multianvil high-pressure / high temperature synthesis in solid state chemistry. Z Kristallogr. 2004;219:330–338. doi: 10.1524/zkri.219.6.330.34633
  • Rubie D. Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions. 1999;68:431–451. doi: 10.1080/01411599908224526
  • Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedrich T, Petuskey WB, Wang Y, Mosenfelder JL. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Mineral. 2012;97:353–368. doi: 10.2138/am.2012.3844
  • Schwarz MR. Multianvil calibration and education: a four probe method to measure the entire force-versus-pressure curve in a single run – performed as an interdisciplinary lab-course for students. J Phys Conf Ser. 2010;215: 012193,1–10. doi: 10.1088/1742-6596/215/1/012193
  • Wade T, Park J, Garza E. Electrochemical synthesis of ceramic materials. 2. Synthesis of AlN and an AlN polymer precursor: chemistry and materials characterization. J Am Chem Soc. 1992;114:9457–9464. doi: 10.1021/ja00050a026
  • Wang B, Callahan M. Ammonothermal synthesis of III-nitride crystals. Crystal Growth Design 2006;6:1227–1246. doi: 10.1021/cg050271r
  • Peters D, Jacobs H. Ammonothermalsynthese von kristallinem siliciumnitridimid, Si2N2NH. J Less-Common Met. 1989;146:241–249. doi: 10.1016/0022-5088(89)90382-2
  • Suzuki A. Compressibility of the high-pressure polymorph of AlOOH to 17 GPa. Mineral Mag. 2009;73:479–485. doi: 10.1180/minmag.2009.073.3.479
  • Huang E, Lin JF, Xu J, Huang T, Jean YC, Sheu HS. Compression studies of gibbsite and its high-pressure polymorph. Phys Chem Miner 1999;26:576–583. doi: 10.1007/s002690050221
  • Bethkenhagen M, French M, Redmer R. Equation of state and phase diagram of ammonia at high pressures from ab initio simulations. J Chem Phys. 2013;138: 234504 1–8. doi: 10.1063/1.4810883
  • Taniguchi T, Watanabe K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J Cryst Growth. 2007;303:525–529. doi: 10.1016/j.jcrysgro.2006.12.061
  • Brookes CA, O'Neill JB, Redfern BaW. Anisotropy in the hardness of single crystals. Proc R Soc London, Ser A: Math Phys Sci. 1971;322:73–88. doi: 10.1098/rspa.1971.0055
  • Thoma K, Hornemann U, Sauer M, Schneider E. Shock waves – phenomenology, experimental, and numerical simulation. Meteorit Planet Sci. 2005;40:1283–1298. doi: 10.1111/j.1945-5100.2005.tb00401.x
  • DeCarli P, Bowden E, Jones A, Price G. Laboratory impact experiments versus natural impact events. In: Koeberl C, McLeod K, editors. Catastrophic events and mass extinctions: impacts and beyond. Boulder, CO: Geological Society of America; 2002. p. 595–605.
  • Saib S, Bouarissa N, Rodríguez-Hernández P, Muñoz A. First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN. J Appl Phys. 2008;103: 013506, 1–8.
  • Rafaja D, Wüstefeld C, Baehtz C, Klemm V, Dopita M, Motylenko M, Michotte C, Kathrein M. Effect of internal interfaces on hardness and thermal stability of nanocrystalline Ti0.5Al0.5N coatings. Metall Mater Trans A. 2011;24:559–569. doi: 10.1007/s11661-010-0204-8
  • Wang F, Tange Y, Irifune T, Funakoshi Ki. P-V-T equation of state of stishovite up to mid-lower mantle conditions. J Geophys Res Solid Earth. 2012;117: B06209/1–B06209/11.
  • Catti M, Pavese A. Equation of state of α-Al2O3 (Corundum) from quasi-harmonic atomistic simulations. Acta Crystallogr, Sect B: Struct Sci. 1998;54:741–749. doi: 10.1107/S0108768198003772
  • Fang C, Metselaar R, Hintzen H, Withde G. Structure models for γ-aluminum oxynitride from ab initio calculations. J Am Ceram Soc. 2001;84:2633–2637. doi: 10.1111/j.1151-2916.2001.tb01064.x
  • Tatsumi K, Tanaka I, Adachi H, Yoshida M. Atomic structures and bondings of β- and spinel-Si6−zAlzOzN8−z by first principles calculations. Phys Rev B. 2002;66: 165210(1–8). doi: 10.1103/PhysRevB.66.165210
  • Schwarz M, Zerr A, Kroke E, Miehe G, Chen IW, Heck M, Thybusch B, Poe B, Riedel R. Spinel Sialons. Angew Chem Int Ed. 2002;41:789–793. doi: 10.1002/1521-3773(20020301)41:5<789::AID-ANIE789>3.0.CO;2-W
  • Schwarz M, Komaragiri R, Zerr A, Kroke E, Riedel R, Miehe G, Lowther J. Spinel-SiAlONs – a new group of silicon-based hard materials. In: Auner N, Weis J, editors. Organosilicon chemistry V: From molecules to materials. Weinheim, Germany: Wiley-VCH Verlag GmbH; 2008. p. 808–813.
  • Gross T, Schwarz M, Knapp M, Kroke E, Fuess H. Thermal expansion study of spinel-sialon. J Eur Ceram Soc. 2007;27:2163–2169. doi: 10.1016/j.jeurceramsoc.2006.07.007
  • Gross T. Synthese und Charakterisierung von Spinell-Sialon. PhD Thesis, TU Darmstadt; 2012.
  • Haviar M, Herbertsson H. The pressure stability of β-sialons. J Mater Sci Lett. 1992;11:179–180. doi: 10.1007/BF00724685
  • Haviar M, Lences Z, Herbertsson H. The stability of yttrium α-SiAlON and β-SiAlON at high pressure and high temperature. J Mater Sci Lett. 1997;16:236–238. doi: 10.1023/A:1018564009989
  • Kuwabara A, Matsunaga K, Tanaka I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs. Phys Rev B. 2008;78: 064104,1–11. doi: 10.1103/PhysRevB.78.064104
  • Nishihara Yb, Nakayama K, Takahashi E, Iguchi T, Funakoshi KI. P-V-T equation of state of stishovite to the mantle transition zone conditions. Phys Chem Miner. 2005;31:660–670. doi: 10.1007/s00269-004-0426-7
  • Lowther J, Schwarz M, Kroke E, Riedel R. Electronic structure calculation of cohesive properties of some Si6−zAlzOzN8−z spinels. J Solid State Chem 2003;176:549–555. doi: 10.1016/S0022-4596(03)00327-X
  • Graham EK, Munly WC, McCauley JW, Corbin ND. Elastic properties of polycrystalline aluminum oxynitride spinel and their dependence on pressure, temperature, and composition. J Am Ceram Soc. 1988;71:807–812. doi: 10.1111/j.1151-2916.1988.tb07527.x
  • Bergman B, Ekström T, Micski A. The Si-Al-O-N system at temperatures of 1700 – 1775°C. J Eur Ceram Soc. 1991;8:141–151. doi: 10.1016/0955-2219(91)90068-B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.