Publication Cover
High Pressure Research
An International Journal
Volume 35, 2015 - Issue 2
239
Views
3
CrossRef citations to date
0
Altmetric
Articles

A finite-element study of sapphire anvils for increased sample volumes

, &
Pages 148-161 | Received 10 Jul 2014, Accepted 15 Jan 2015, Published online: 19 Feb 2015

References

  • Ridley CJ, Kamenev KV. High pressure neutron and X-ray diffraction at low temperatures. Z Kristallogr – Cryst. Mater. 2014;229:171–199. doi: 10.1515/zkri-2013-1673
  • Arima H, Hattori T, Komatsu K, Abe J, Utsumi W, Kagi H, Suzuki A, Suzuya K, Kamiyama T, Arai M, Yagi T. Designing PLANET: neutron beamline for high-pressure material science at J-PARC. J Phys: Conf Ser. 2010;215:012025. doi:10.1088/1742-6596/215/1/012025
  • Besson JM, Weill G, Hamel G, Nelmes RJ, Loveday JS, Hull S. Equation of state of lithium deuteride from neutron diffraction under high pressure. Phys Rev B. 1992;45:2613–2619. doi: 10.1103/PhysRevB.45.2613
  • Goncharenko IN. Neutron diffraction experiments in diamond and sapphire anvil cells. High Pressure Res. 2004;24:193–204. doi: 10.1080/08957950410001661882
  • Jacobsen MK, Ridley CJ, Bocian A, Kirichek O, Manuel P, Khalyavin D, Azuma M, Attfield JP, Kamenev KV. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures. Rev Sci Instrum. 2014;85:043904. doi:10.1063/1.4870061
  • Furuno K, Onodera A, Kume S. Sapphire-anvil cell for high pressure research. Japn J Appl Phys. 1986;25:L646–L647. doi: 10.1143/JJAP.25.L646
  • Takano KJ, Wakatsuki M. An optical high pressure cell with spherical sapphire anvils. Rev Sci Instrum. 1991;62:1576–1580. doi: 10.1063/1.1142435
  • Okuchi T, Yoshida M, Ohno Y, Tomioka N, Purevjav N, Osakabe T, Harjo S, Abe J, Aizawa K, Sasaki S. Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell. High Press Res. 2013;33:777–786. doi: 10.1080/08957959.2013.852190
  • Eremets M. High pressure experimental methods. Oxford: Oxford University Press; 1996.
  • Klotz S. Techniques in high pressure neutron scattering. Chapter 7.1.2. Boca Raton, FL: CRC Press; 2013.
  • Bundy FP. Designing tapered anvil apparatus for achieving higher pressures. Rev Sci Instrum. 1977;48:591–596. doi: 10.1063/1.1135115
  • Dunn K-J. The yield stress of opposed anvils. J Appl Phys. 1977;48:1829–1832. doi: 10.1063/1.323925
  • Adams DM, Shaw AC. A computer-aided design study of the behaviour of diamond anvils under stress. J Phys D: Appl Phys. 1982;15:1609–1635. doi: 10.1088/0022-3727/15/9/006
  • Adams DM, Christy AG, Norman AJ. Optimization of diamond anvil cell performance by finite element analysis. Meas Sci Technol. 1993;4:422–430. doi: 10.1088/0957-0233/4/3/026
  • Bruno MS, Dunn KJ. Stress analysis of a beveled diamond anvil. Rev Sci Instrum. 1984;55:940–943. doi: 10.1063/1.1137869
  • Novikov NV, Levitas VI, Polotnyak SB, Potemkin MM. Numerical methods for optimizing the design of a high-pressure apparatus with diamond anvils. Strength Mater. 1994;26:294–302. doi: 10.1007/BF02207410
  • Moss WC, Goettel KA. Finite element design of diamond anvils. Appl Phys Lett. 1986;50:25–27. doi: 10.1063/1.98115
  • Merkel S, Hemley RJ, Mao H-K. Finite-element modelling of diamond deformation at multimegabar pressures. Appl Phys Lett. 1999;74:656–658. doi: 10.1063/1.123031
  • Hemley RJ, Mao HK, Shen GY, Badro J, Gillet P, Hanfland M, Hausermann D. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science. 1997;276:1242–1245. doi: 10.1126/science.276.5316.1242
  • Montagne A, Pathak S, Maeder X, Michler J. Plasticity and fracture of sapphire at room temperature: load-controlled microcompression of four different orientations. Ceram Int. 2014;40:2083–2090. doi: 10.1016/j.ceramint.2013.07.121
  • Dobrovinskaya ER, Lytvynov LA, Pishchik V. Sapphire: Mat, Manuf, Appl. Springer; 2009.
  • Fang J, Bull CL, Loveday JS, Nelmes RJ, Kamenev KV. Strength analysis and optimisation of double-toroidal anvils for high-pressure research. Rev Sci Instrum. 2012;83:093902. doi:10.1063/1.4746993
  • Schmid F, Harris DC. Effects of crystal orientation and temperature on the strength of sapphire. J Am Ceram Soc. 1998;81:885–893. doi: 10.1111/j.1151-2916.1998.tb02423.x
  • Azhdari A, Nemat-Nasser S. Experimental and computational study of fracturing in an anisotropic brittle solid. Mech Mater. 1998;28:247–262. doi: 10.1016/S0167-6636(97)00062-8
  • Fischer JW, Compton WR, Jaeger A, Harris DC. Strength of sapphire as a function of temperature and crystal orientation. Proc SPIE Window Dome Technol Mater II. 1990;1326:11–22. doi: 10.1117/12.22477
  • Jackman EA, Roberts JP. The strength of single crystal and polycrystalline corundum. Phil Mag. 1955;46:809–811. doi: 10.1080/14786440708520610
  • Gentilman RL, Maguire EA, Starrett HS, Hartnett TM, Kirchner HP. Strength and transmittance of sapphire and strengthened sapphire. J Am Ceram Soc. 1981;64:C116–C117. doi: 10.1111/j.1151-2916.1981.tb10327.x
  • Wachtman JB, Maxwell LH. Strength of synthetic single crystal sapphire and ruby as a function of temperature and orientation. J Am Ceram Soc. 1959;42:432–433. doi: 10.1111/j.1151-2916.1959.tb12969.x
  • Shipway PH, Hutchings IM. Fracture of brittle spheres under compression and impact loading. 1. Elastic stress distributions. Philos Mag A. 1993;67:1389–1404. doi: 10.1080/01418619308225362
  • Soltis PJ. Anisotropic mechanical behaviour in sapphire (Al2O3) whiskers. Am Ceram Soc Bull. 1965;44:401.
  • Shipway PH, Hutchings IM. Fracture of brittle spheres under compression and impact loading. 2. Results for lead-glass and sapphire spheres. Philos Mag A. 1993;67:1405–1421. doi: 10.1080/01418619308225363
  • Lajtai EZ, Carter BJ, Ayari ML. Criteria for brittle-fracture in compression. Eng Fract Mech. 1990;37:59–74. doi: 10.1016/0013-7944(90)90331-A
  • Dunstan DJ. Theory of the gasket in diamond anvil high-pressure cells. Rev Sci Instrum. 1989;60:3789–3795. doi: 10.1063/1.1140442
  • Kuhs WF, Ahsbahs H, Londono D. In-situ crystal growth and neutron four-circle diffractometry under high pressure. 1989;156/157:684–687.
  • Kitagawa K, Gotou H, Yagi T, Yamada A, Matsumoto T, Uwatoko Y, Takigawa M. Space efficient opposed anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa. J Phys Soc Jpn. 2010;79:024001-1–024001-8. doi:10.1143/JPSJ.79.024001
  • Iizuka R, Takehiko Y, Gotou H, Komatsu K, Kagi H. An opposed-anvil-type apparatus with an optical window and a wide-angle aperture for neutron diffraction. High Press Res. 2012;32:430–441. doi: 10.1080/08957959.2012.722213
  • Okuchi T, Sasaki S, Ohno Y, Abe J, Arima H, Osakabe T, Hattori T, Sano-Furukawa A, Komatsu K, Kagi H, Utsumi W, Harjo S, Ito T, Aizawa K. Neutron powder diffraction of small-volume samples at high pressure using compact opposed-anvil cells and focused beam. J Phys: Conf Ser. 2012;377:012013. doi:10.1088/1742-6596/377/1/012013
  • Green DJ. An introduction to the mechanical properties of ceramics. Chapter 9, p. 285–315. Cambridge: Cambridge University Press; 1998.
  • Klein CA. Flexural strength of sapphire: Weibull statistical analysis of stressed area, surface coating, and polishing procedure effects. J Appl Phys. 2004;96:3172. doi:10.1063/1.1782272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.