Publication Cover
High Pressure Research
An International Journal
Volume 36, 2016 - Issue 2
114
Views
6
CrossRef citations to date
0
Altmetric
Articles

Polyamorphism of liquid silica under compression based on five order-parameters and two-state model: a completed and unified description

, &
Pages 187-197 | Received 14 Jul 2015, Accepted 03 Feb 2016, Published online: 18 Feb 2016

References

  • Sonneville C, Deschamps T, Martinet C, de Ligny D, Mermet A, Champagnon B. Polyamorphic transitions in silica glass. J Non Cryst Solids. 2013;382:133–136. doi: 10.1016/j.jnoncrysol.2012.12.002
  • Takada A, Richet P, Catlow CRA, Price GD. Molecular dynamics simulation of polymorphic and polyamorphic transitions in tetrahedral network glasses: BeF2 and GeO2. J Non Cryst Solids. 2007;353:1892–1898. doi: 10.1016/j.jnoncrysol.2007.01.053
  • Huang L, Nicholas J, Kieffer J, Bass J. Polyamorphic transitions in vitreous B2O3 under pressure. J Phys: Condens Matter. 2008;20:075107.
  • Vogel M, Glotzer SC. Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica. Phys Rev Lett. 2004;92:255901. doi: 10.1103/PhysRevLett.92.255901
  • Hoang VV. About an order of liquid–liquid phase transition in simulated liquid Al2O3. Phys Lett A. 2005;335:439–443. doi: 10.1016/j.physleta.2004.12.040
  • Swamy V, Muddle BC. Pressure-induced polyamorphic transition in nanoscale TiO2. J Aust Ceram Soc. 2008;44(2):1–5.
  • Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K. A first-order liquid–liquid phase transition in phosphorus. Nature. 2000;403:170–173. doi: 10.1038/35003143
  • Aasland S, McMillan PF. Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3. Nature. 1994;369:633–636. doi: 10.1038/369633a0
  • Salmon PS, Drewitt JWE, Whittaker DAJ, et al. Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5GPa. J Phys Condens Matter. 2012;24:415102. doi: 10.1088/0953-8984/24/41/415102
  • Rustad JR, Yuen DA, Spera FJ. Molecular dynamics of liquid SiO2 under high pressure. Phys Rev A. 1990;42:2081–2089. doi: 10.1103/PhysRevA.42.2081
  • Badro J, Gillet P, Barrat JL. A strong to fragile transition in a model of liquid silica. Molecular Simulation. 1997;20:17–25. doi: 10.1080/08927029708024165
  • Meade C, Hemley RJ, Mao HK. High-pressure x-ray diffraction of SiO2 glass. Phys Rev Lett. 1992;69(9):1387–1390. doi: 10.1103/PhysRevLett.69.1387
  • Landron C, Hennet L, Jenkins TE, Greaves GN, Coutures JP, Soper AK. Liquid alumina: detailed atomic coordination determined from neutron diffraction data using empirical potential structure refinement. Phys Rev Lett. 2001;86(21):4839–4842. doi: 10.1103/PhysRevLett.86.4839
  • Hung PK, Hong NV. Simulation study of polymorphism and diffusion anomaly for SiO2 and GeO2 liquid. Eur Phys J B. 2009;71:105–110. doi: 10.1140/epjb/e2009-00276-2
  • Richet P, Ottonello G. Thermodynamics of phase equilibria in magma. Elements. 2004;6:315–320. doi: 10.2113/gselements.6.5.315
  • Skinner LB. Joint diffraction and modeling approach to the structure of liquid alumina. Phys Rev B. 2013;87:024201. doi: 10.1103/PhysRevB.87.024201
  • Lacks DJ. First-order amorphous-amorphous transformation in silica. Phys Rev Lett. 2000;84(20):4629–4632. doi: 10.1103/PhysRevLett.84.4629
  • Mishima O, Calvert LD, Whalley E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature. 1985;314:76–78. doi: 10.1038/314076a0
  • Mishima O. Reversible first-order transition between two H2O amorphs at ∼ 0.2GPa and ∼135K. J Chem Phys. 1994;100:5910–5912. doi: 10.1063/1.467103
  • Mishima O, Stanley HE. Decompression-induced melting of ice IV and the liquid–liquid transition in water. Nature. 1998;392:164–168. doi: 10.1038/32386
  • Durandurdu M, Drabold DA. Ab initio simulations of first order amorphous to amorphous phase transition of Silicon. Phys Rev B. 2001;64:014101. doi: 10.1103/PhysRevB.64.014101
  • Durandurdu M, Drabold DA. First-order pressure-induced polyamorphism in germanium. Phys Rev B. 2002;66:041201. doi: 10.1103/PhysRevB.66.041201
  • Grimsditch M. Polymorphism in amorphous SiO2. Phys Rev Lett. 1984;52:2379–2381. doi: 10.1103/PhysRevLett.52.2379
  • Hemley RJ, Mao HK, Bell PM, Mysen BO. Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett. 1986;57:747–750. doi: 10.1103/PhysRevLett.57.747
  • Williams Q, Jeanloz R. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science. 1988;239:902–905. doi: 10.1126/science.239.4842.902
  • McMillan PF, Chung H, Aasland S, et al. Liquid and glassy polyamorphism in the Y2O3-Al2O3 system. Mat. Res. Soc. Symp. Proc. 1997;455:377–379.
  • Wilding MC, Wilson M, McMillan PF. Structural studies and polymorphism in amorphous solids and liquids at high pressure. Chem Soc Rev. 2006;35:964–986. doi: 10.1039/b517775h
  • McMillan PF, Wilson M, Wilding MC, Daisenberger D, Mezouar M, Greaves GN. Polyamorphism and liquid–liquid phase transitions: challenges for experiment and theory. J. Phys. Condens. Matter. 2007;19:415101. doi: 10.1088/0953-8984/19/41/415101
  • Hung PK, Hong NV, Vinh LT. Diffusion and structure in silica liquid: a molecular dynamics simulation. J Phys Condens Matter. 2007;19:466103. doi: 10.1088/0953-8984/19/46/466103
  • Oeffner RD, Elliott SR. Interatomic potential for germanium dioxide empirically fitted to an ab initio energy surface. Phys Rev B. 1998;58:14791. doi: 10.1103/PhysRevB.58.14791
  • Vashishta P, Kalia RK, Nakano A, Rino JP. Interaction potentials for alumina and molecular dynamics simulations of amorphous and liquid alumina. J App Phys. 2008;103:083504. doi: 10.1063/1.2901171
  • Sato T, Funamori N. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett. 2008;101(25):255502. doi: 10.1103/PhysRevLett.101.255502
  • Hong NV, Ha NTT, Hung HV, Lan MT, Hung PK. Dynamics and diffusion mechanism in network forming liquid under high pressure: a new approach. Mater Chem Phys. 2013;138:154e161. doi: 10.1016/j.matchemphys.2012.11.036
  • Lascaris E, Hemmati M, Buldyrev SV, Eugene Stanley H, Austen Angell C. Diffusivity and short-time dynamics in two models of silica. J. Chem. Phys. 2015:142;104506. doi: 10.1063/1.4913747
  • Daisenberger D, McMillan PF, Wilson M, Machon D, Quesada-cabrera R, Wilding MC. High-pressure x-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Phys. Rev. B. 2007:75;224118. doi: 10.1103/PhysRevB.75.224118
  • Morishita T. High density amorphous form and polyamorphic transformations of silicon. Phys. Rev. Lett. 2004;93:055503. doi: 10.1103/PhysRevLett.93.055503
  • Richet P, Ottonello G. Phase equilibria in magma. Elements. 2010;6:315–320. doi: 10.2113/gselements.6.5.315
  • Koziatek P, Barrat JL, Rodney D. Short- and medium-range orders in as-quenched and deformed SiO2 glasses: An atomistic study. J Non Cryst Solids. 2015;414:7–15. doi: 10.1016/j.jnoncrysol.2015.01.009
  • Wu M, Jiang YLJ, Tse JS. Structure and properties of dense silica glass. Sci. Rep. 2012;2.398. doi:10.1038/srep00398.
  • Aksay IA, Pask JA, Davis RF. Densities of SiO2-Al2O3 melts. J. Amer. Ceram. Soc. 1979;62:332–336. doi: 10.1111/j.1151-2916.1979.tb19071.x
  • Jackson I. Melting of the silica isotypes SiO2, BeF2, and GeO2, at elevated pressures. Phys. Earth Planet. Int. 1976;13:218–231. doi: 10.1016/0031-9201(76)90096-0
  • Zhang J, Liebermann RC, Gasparik T, Herzberg CT. Melting and subsolidus relations of SiO2, at 9–14GPa. J. Geophys. Res. 1993;98:19785–19793. doi: 10.1029/93JB02218
  • Bottinga Y, Weill DF. Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. J. Sci. 1970;269:169–182. doi: 10.2475/ajs.269.2.169
  • Mantisi B, Tanguy A, Kermouche G, Barthel E. Atomistic response of a model silica glass under shear and pressure. Eur. Phys. J. B. 2012;85(304):1–13.
  • Carré A, Berthier L, Horbach J, Ispas S, Kob W. Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study. J. Chem. Phys. 2007;127:114512. doi: 10.1063/1.2777136
  • Vollmayr-Lee K, Zippelius A. Temperature-dependent defect dynamics in the network glass SiO2. Phys. Rev. E. 2013;88:052145. doi: 10.1103/PhysRevE.88.052145
  • Scott Shell M, Debenedetti PG, Panagiotopoulos AZ. Molecular structural order and anomalies in liquid silica. Phys. Rev. E. 2002;66:011202. doi: 10.1103/PhysRevE.66.011202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.