Publication Cover
High Pressure Research
An International Journal
Volume 36, 2016 - Issue 2
198
Views
2
CrossRef citations to date
0
Altmetric
Articles

Polymer-precursor-derived (am-) SiC/TiC composites for resistive heaters in large volume multi-anvil high pressure/high-temperature apparatus

, , &
Pages 167-186 | Received 25 Dec 2015, Accepted 08 Mar 2016, Published online: 25 Mar 2016

References

  • Rubie D. Characterising the sample environment in multianvil high-pressure experiments. Phase Transit. 1998;68:431–451. doi: 10.1080/01411599908224526
  • Shatskiy A, Katsura T, Litasov KD, et al. High pressure generation using scaled-up Kawai-cell. Phys Earth Planet Inter. 2011;189:92–108. doi: 10.1016/j.pepi.2011.08.001
  • Gotou H, Yagi T. Opposed-anvil-type high-pressure and high-temperature apparatus using sintered diamond. Rev Sci Instrum. 2006;77:035113-1–035113-6. doi: 10.1063/1.2182855
  • Liebermann RC. Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Res. 2011;31:493–532. doi: 10.1080/08957959.2011.618698
  • Irifune T, Isobe F, Shinmei T. A novel large volume Kawai type apparatus and its application to the synthesis of sintered bodies of nano polycrystalline diamond. Phys Earth Planet Inter. 2014;228:255–261. doi: 10.1016/j.pepi.2013.09.007
  • Huppertz H. Multianvil high-pressure/high temperature synthesis in solid state chemistry. Cryst Mater. 2004;219:330–338.
  • Stoyanova E, Haeussermann U, Leinenweber K. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure Res. 2010;30:175–189. doi: 10.1080/08957950903422444
  • Ohtani E, Kumazawa M. Melting of forsterite Mg2SiO4 up to 15 GPa. Phys Earth Planet Inter. 1981;27:32–38. doi: 10.1016/0031-9201(81)90084-4
  • Kato T, Kumazawa M. Melting and phase relations in the Mg2SiO4-MgSiO3 system at 20 GPa under hydrous conditions. J Geophys Res. 1986;91:9351–9355. doi: 10.1029/JB091iB09p09351
  • Funamori N, Yagi T, Utsumi W, et al. Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000K. J Geophys Res. 1996;101:8257–8269. doi: 10.1029/95JB03732
  • Irifune T, Nishiyama N, Kuroda K, et al. The postspinel phase-boundary in Mg2SiO4 determined by in-situ X-ray-diffraction. Science. 1998;279:1698–1700. doi: 10.1126/science.279.5357.1698
  • Taniguchi T, Akaishi M, Kanke Y, et al. TiC-diamond composite disk-heater cell assembly to generate temperature of 2000°C in a large-volume belt-type high-pressure apparatus at 10 GPa. Rev Sci Instrum. 2004;75:1959–1962. doi: 10.1063/1.1753092
  • Leinenweber K, Tyburczy J, Sharp T, et al. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Mineral. 2012;97:353–368. doi: 10.2138/am.2012.3844
  • Jiang S, Liu L, Ong K, et al. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. J Power Sour. 2008;176:82–89. doi: 10.1016/j.jpowsour.2007.10.053
  • Shatskiy A, Yamazaki D, Morard G, et al. Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Rev Sci Instrum. 2009;80:023907-1–023907-7. doi: 10.1063/1.3084209
  • Funamori N, Yagi T. High pressure and high temperature in situ x-ray observation of MgSiO3 perovskite under lower mantle conditions. Geophys Res Lett. 1993;20:387–390. doi: 10.1029/92GL02960
  • Sokolv P, Mukhanov V, Chauveau T, et al. On melting of silicon carbide under pressure. J Superhard Mater. 2012;34:339–341. doi: 10.3103/S1063457612050097
  • Yoshida M, Onodera A. Pressure-induced phase transition in SiC. Phys Rev B Condens Matter. 1993;48:10587–10590. doi: 10.1103/PhysRevB.48.10587
  • Bhatnagar M, Baliga BJ. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Trans Electron Devices. 1993;40:645–655. doi: 10.1109/16.199372
  • Gradinaru G, Sudarshan T, Gradinaru S, et al. Electrical properties of high resistivity 6H SiC under high temperature/high field stress. Appl Phys Lett. 1997;70:735–737. doi: 10.1063/1.118264
  • Murri R, Pinto N, Ambrosone G, et al. Electrical resistivity of a-SiC:H as a function of temperature: evidence for discontinuities. Phys Rev B Condens Matter. 2000;62:1801–1805. doi: 10.1103/PhysRevB.62.1801
  • Lipatnikov V, Gusev A. Dependence of the resistivity of nonstoichiometric titanium carbide TiCy on the density and distribution of carbon vacancies. JETP Lett. 1999;70:294–300. doi: 10.1134/1.568168
  • Lee S, Zetterling C, Oestling M, et al. Low resistivity ohmic contacts on 4H-silicon carbide for high power and high temperature device applications. Microelectron Eng. 2002;60:261–268. doi: 10.1016/S0167-9317(01)00603-7
  • Wakelkamp W, Loo F, Metselaar R. Phase relations in the Ti-Si-C system. J Eur Ceram Soc. 1991;8:135–139. doi: 10.1016/0955-2219(91)90067-A
  • Liversage J, McLachlan D, Sigalas I. Microstruc-ture, phase and thermoelastic properties of laminated liquid-phase-sinteredsilicon carbide–titanium carbide ceramic composites. J Am Ceram Soc. 2007;90:2189–2195. doi: 10.1111/j.1551-2916.2007.01666.x
  • Wang L, Jiang W, Chen L, et al. Rapid reactive synthesis and sintering of submicron TiC/SiC composites through spark plasma sintering. J Am Ceram Soc. 2004;87:1157–1160. doi: 10.1111/j.1551-2916.2004.01157.x
  • Luo Y, Li S, Pan W, et al. Fabrication and mechanical evaluation of SiC–TiC nanocomposites by SPS. Mater Lett. 2004;58:150–153. doi: 10.1016/S0167-577X(03)00434-8
  • Zhou M, Rodrigo P, Wang X, et al. A novel approach for preparation of dense TiC-SiC nanocomposites by sol-gel infiltration and spark plasma sintering. J Eur Ceram Soc. 2014;34:1949–1954. doi: 10.1016/j.jeurceramsoc.2014.01.028
  • Cheng L, Xie Z, Liu G. Spark plasma sintering of TiC-based composites toughened by submicron SiC particles. Ceram Int. 2013;39:5077–5082. doi: 10.1016/j.ceramint.2012.12.002
  • An HG, Kim YW, Lee JG. Effect of initial a-phase content of SiC on microstructure and mechanical properties of SiC-TiC composites. J Eur Ceram Soc. 2001;21:93–98. doi: 10.1016/S0955-2219(00)00160-6
  • Wang L, Jiang W, Chen L. Fabrication and characterization of nano-SiC particles reinforced TiC/SiCnano composites. Mater Lett. 2004;58:1401–1404. doi: 10.1016/j.matlet.2003.09.053
  • Greil P. Polymer derived engineering ceramics. Adv Eng Mater. 2000;2:339–348. doi: 10.1002/1527-2648(200006)2:6<339::AID-ADEM339>3.0.CO;2-K
  • Kroke E, Li Y, Konetschny C, et al. Silazane derived ceramics and related materials. Mater Sci Eng R. 2000;26:97–199. doi: 10.1016/S0927-796X(00)00008-5
  • Greil P. Near net shape manufacturing of polymer derived ceramics. J Eur Ceram Soc. 1998;18:1905–1914. doi: 10.1016/S0955-2219(98)00129-0
  • Greil P. Active-filler-controlled pyrolysis of preceramic polymers. J Am Ceram Soc. 1995;78:835–848. doi: 10.1111/j.1151-2916.1995.tb08404.x
  • Bakumov V, Schwarz M, Kroke E. Emulsion processing and size control of polymer-derived spherical Si/C/O ceramic particles. Soft Mater. 2007;4:287–299. doi: 10.1080/15394450701310251
  • Zhu S, Ding S, Xi H, et al. Low-temperature fabrication of porous SiC ceramics by preceramic polymer reaction bonding. Mater Lett. 2005;59:595–597. doi: 10.1016/j.matlet.2004.11.003
  • Stern E, Heyder M. Micropatterned ceramic surfaces by coating with filled preceramic polymers. J Am Ceram Soc. 2009;92:2438–2442. doi: 10.1111/j.1551-2916.2009.03228.x
  • Zheng J, Akinc M. Green state joining of SiC without applied pressure. J Am Ceram Soc. 2001;84:2479–2483. doi: 10.1111/j.1151-2916.2001.tb01039.x
  • Lewinsohn C, Jones R, Colombo P, et al. Silicon carbide-based materials for joining silicon carbide comoposites for fusion energy applications. J Nucl Mater. 2002;307–311:1232–1236. doi: 10.1016/S0022-3115(02)01063-2
  • Interrante L, Jacobs J, Sherwood W, et al. Fabrication and properties of fiber-and particulate-reinforced SiC matrix composites obtained with (A)HPCS as the matrix source. CMMC 96-Proceedings of the First International Conference ON Ceramic AND Metal Matrix Composites. 1996 September 9–12; San Sebastian, Spain.
  • Zunjarrao S. Polymer derived ceramics: processing-structure-property relationship. Oklahoma: Oklahoma State University; 2008.
  • Sreeja R, Swaminathan B, Painuly A, et al. Allylhydridopoly-carbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B. 2010;168:204–207. doi: 10.1016/j.mseb.2009.12.033
  • Nishiyabu K, Matsuzaki S, Kotani M. Development of silicon carbide heat-resistant composites with micro-porous structure. 16th international conference on composite materials. 2007 July 8–13; Kyoto, Japan.
  • Interrante L, Moraes K, Mcdonald L, et al. Mechanical, thermochemical and microstructural characterization of AHPCS-derived SiC. Ceram Trans. 2002;144:125–140.
  • StarPCS™ SMP-10 [Internet]. New York: Star Fire Systems; [cited 2015 Dec 7]. Available from: http://www.starfiresystems.com/docs/ceramic-forming-polymers/SMP-10.pdf.
  • Schwarz M, Antlauf M, Kroke E, et al. Formation and properties of rocksalt-type AlN and implications for high pressure phase relations in the system Si–Al–O–N. High Pressure Res. 2014;34:22–38. doi: 10.1080/08957959.2013.857020
  • Yin J, Lee S, Feng L, et al. The effects of SiC precursors on the microstructures and mechanical properties of SiCf/SiC composites prepared via polymer impregnation and pyrolysis process. Ceram Int. 2015;41:4145–4153. doi: 10.1016/j.ceramint.2014.11.112
  • Brouwers HJH. Particle-size distribution and packing fraction of geometric random packings. Phys Rev E. 2006;74:031309. doi: 10.1103/PhysRevE.74.031309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.