Publication Cover
High Pressure Research
An International Journal
Volume 36, 2016 - Issue 2
1,112
Views
75
CrossRef citations to date
0
Altmetric
Articles

High pressure research using muons at the Paul Scherrer Institute

, , , , , , , , , & show all
Pages 140-166 | Received 29 Mar 2016, Accepted 30 Mar 2016, Published online: 10 May 2016

References

  • Yaouanc A, de Réotier PD. Muon spin rotation, relaxation, and resonance. Oxford: Oxford Science Publications; 2011.
  • Schenck A. Muon spin rotation spectroscopy: principles and applications in solid state physics. Bristol: Adam Hilger; 1985.
  • Garwin RL, Lederman LM, Weinrich M. Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys Rev. 1957;105:1415–1417. doi: 10.1103/PhysRev.105.1415
  • Klotz S. Techniques in high pressure neutron scattering. Boca Raton (FL): CRC Press; 2013.
  • Eremets MI. High pressure experimental methods. Oxford: Oxford University Press; 1996.
  • Wang W, Sokolov DA, Huxley AD, Kamenev KV. Large volume high-pressure cell for inelastic neutron scattering. Rev Sci Instrum. 2011;82:073903: 1–6.
  • Butz T, Chappert J, Dufresne JF, et al. The effect of pressure on the positive muon spin precession in iron and nickel. Phys Lett A. 1980;75:321–324. doi: 10.1016/0375-9601(80)90577-0
  • Butz T, Kalvius GM, Lindgren B, Hartmann O, Wäppling R, Karlsson E. A high pressure, low temperature system for μSR studies. Hyperfine Interact. 1986;32:881–885. doi: 10.1007/BF02394998
  • Kratzer A, Mutzbauer K, Heuneberger S, et al. High pressure μSR studies. Hyperfine Interact. 1994;87:1055–1061. doi: 10.1007/BF02068504
  • Hartmann O, Karlsson E, Wappling R, et al. The spin turning in ferromagnetic Gd studied by positive muons. Hyperfine Interact. 1994;85:251–258. doi: 10.1007/BF02069430
  • Wäckelgård E, Hartmann O, Karlsson E, et al. Knight shifts and relaxation in gadolinium above the Curie temperature. Hyperfine Interact. 1986;31:325–330. doi: 10.1007/BF02401576
  • Schreier E, Heuneberger S, Burghart EL, et al. High pressure μSR studies on single crystalline gadolinium. Hyperfine Interact. 1997;104:311–317. doi: 10.1023/A:1012668902931
  • Schreier E. Myonen Spin Rotation und Relaxation zur Untersuchung magnetischer Eigenschaften der schweren Seltenen-Erd-Metalle [PhD thesis]. TU Münich; 1999.
  • Martin EM. Magnetische Eigenschaften des frustrierten Systems GdMn2 [MsC thesis]. TU Münich; 1996.
  • Martin EM, Schreier E, Kalvius GM, et al. Magnetic properties of GdMn2 from μSR. Physica B. 2000;289:265. doi: 10.1016/S0921-4526(00)00389-6
  • Kalvius GM, Schreier E, Ekström M, et al. High pressure μSR studies: rare earths and related materials. Hyperfine Interact. 2000;128:275. doi: 10.1023/A:1012695902178
  • Andreica D. Magnetic phase diagram of some Kondo-Lattice compounds: Microscopic and macroscopicstudies [PhD thesis]. Zürich: IPP/ETH-Zürich; 2001.
  • Watanabe I, Ishii Y, Kawamata T, et al. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility. Physica B. 2009;404:993–995. doi: 10.1016/j.physb.2008.11.209
  • Telling MTF, Knight KS, Pratt FL, et al. Pressure-dependent spin fluctuations and magnetic structure in the topologically frustrated spin glass alloy Y(Mn0.95Al0.05)2. Phys Rev B. 2012;85: 184416:1–11. doi: 10.1103/PhysRevB.85.184416
  • Ellis KJ, Cywinski R, Pratt FL, Telling MTF. Pressure dependent magnetism in Y1.05(Mn0.95Al0.05)2. Phys Procedia. 2012;30:198–201. doi: 10.1016/j.phpro.2012.04.072
  • Enomoto M, Kida N, Kojima N, Watanabe I, Suzuki T, Ishii Y. Study on the pressure induced charge transfer phase transition in (C5H11)4N(FeIIFeIII(C2O2S2)3) by means of μSR spectroscopy. Polyhedron. 2011;30:3137–3139. doi: 10.1016/j.poly.2011.03.019
  • Suzuki T, Watanabe I, Yamada F, et al. Pressure-induced new magnetic phase in Tl(Cu0.985Mg0.015)Cl3 probed by muon spin rotation. J Phys. Conf. Ser. 2010;225: 012054: 1–5.
  • Suzuki T, Watanabe I, Yamada F, et al. Pressure effect on magnetic ground states in Tl(Cu1−xMgx)Cl3 with x = 0.015 probed by muon-spin-rotation. J Phys. Conf. Ser. 2010;200:022061: 1–4.
  • Suzuki T, Watanabe I, Yamada F, et al. Evidence for continuous change of spin states between impurity-induced order and pressure-induced order in TlCu0.985Mg0.015Cl3 probed via muon spin rotation. Phys Rev B. 2009;80:064407: 1–5.
  • Available from: https://www.cartech.com/ssalloysprod.aspx?id=1926.
  • Available from: http://www.ceratizit.com/.
  • Available from: http://www.ansys.com/.
  • Eiling A, Schilling JS. Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300 K and 0–10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. J Phys F: Met Phys. 1981;11:623–639. doi: 10.1088/0305-4608/11/3/010
  • Torikachvili MS, Kim SK, Colombier E, Budko SL, Canfield PC, Solidification and loss of hydrostaticity in liquid media used for pressure measurements. Rev. Sci. Instrum. 2015;86:123904:1–7.
  • Kubo R, Toyabe T. A stochastic model for low field resonance and relaxation, Magnetic resonance and relaxation. Amsterdam: North-Holland; 1967. p. 810–823.
  • Walker IR. Nonmagnetic piston-cylinder pressure cell for use at 35 kbar and above. Rev Sci Instrum. 1999;70:3402–3412. doi: 10.1063/1.1149927
  • Maisuradze A, Graneli B, Guguchia Z, et al. Effect of pressure on the Cu and Pr magnetism in Nd1−xPrxBa2Cu3O7−δ investigated by muon spin rotation. Phys Rev B. 2013;87:054401:1–12.
  • Uwatoko Y, Todo S, Ueda K, et al. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell. J Phys: Condens Matter. 2002;14:11291–11296.
  • Klotz S, Chervin JC, Munsch P, Le Marchand G. Hydrostatic limits of 11 pressure transmitting media. J Phys D: Appl Phys. 2009;42:075413:1–7. doi: 10.1088/0022-3727/42/7/075413
  • Tateiwa N, Haga Y. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev Sci Instrum. 2009;80:123901:1–7. doi: 10.1063/1.3265992
  • Major J, Mundy J, Schmolz M, et al. Zero-field muon spin rotation in monocrystalline chromium. Hyperfine Interact. 1986;31:259–264. doi: 10.1007/BF02401569
  • Amato A. Heavy-fermion systems studied by μSR technique. Rev Mod Phys. 1997;69:1119–1179. doi: 10.1103/RevModPhys.69.1119
  • Dalmas de Réotier P, Yaouanc A. Muon spin rotation and relaxation in magnetic materials. J Phys: Condens Matter. 1997;9:9113–9166.
  • Tinkham M. Introduction to superconductivity. Malabar (FL): Krieger Publishing Company; 1975.
  • Abrikosov AA. On the magnetic properties of superconductors of the second group. Zh Eksp Teor Fiz. 1957;32:1442–1452.
  • Lee SL, Zimmermann P, Keller H, et al. Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi2.15Sr1.85CaCu2O8+δ from muon spin rotation studies. Phys Rev Lett. 1993;71:3862–3865. doi: 10.1103/PhysRevLett.71.3862
  • Lee SL, Warden M, Keller H, et al. Evidence for two-dimensional thermal fluctuations of the vortex structure in Bi2.15Sr1.85CaCu2O8+δ from muon spin rotation experiments. Phys Rev Lett. 1995;75:922–925. doi: 10.1103/PhysRevLett.75.922
  • Aegerter CM, Lee SL, Keller H, Forgan EM, Lloyd SH. Dimensional crossover in the magnetic phase diagram of Bi2.15Sr1.85CaCu2O8+δ crystals with different oxygen stoichiometry. Phys Rev B. 1996;54:R15661–R15664. doi: 10.1103/PhysRevB.54.R15661
  • Aegerter CM, Hofer J, Savić IM, et al. Angular dependence of the disorder crossover in the vortex lattice of Bi2.15Sr1.85CaCu2O8+δ by muon spin rotation and torque magnetometry. Phys Rev B. 1998;57:1253–1258. doi: 10.1103/PhysRevB.57.1253
  • Morenzoni E, Prokscha T, Suter A, Luetkens H, Khasanov R. Nano-scale thin film investigations with slow polarized muons. J Phys: Condens Matter. 2004;16:S4583–S4601.
  • Khasanov R, Sanna S, Prando G, et al. Tuning of competing magnetic and superconducting phase volumes in LaFeAsO0.945F0.055 by hydrostatic pressure. Phys Rev B. 2011;84:100501(R):1–4. doi: 10.1103/PhysRevB.84.100501
  • Bendele M, Maisuradze A, Roessli B, et al. Pressure-induced ferromagnetism in antiferromagnetic Fe1.03Te. Phys Rev B. 2013;87:060409(R):1–4. doi: 10.1103/PhysRevB.87.060409
  • Khasanov R, Bendele M, Amato A, et al. Evolution of two-gap behavior of the superconductor FeSe1−x. Phys Rev Lett. 2010;104:087004:1–4. doi: 10.1103/PhysRevLett.104.087004
  • Guguchia Z, Shermadini Z, Amato A, et al. Muon-spin rotation measurements of the magnetic penetration depth in the Fe-based superconductor Ba1−xRbxFe2As2. Phys Rev B. 2011;84:094513:1–7.
  • Guguchia Z, Shengelaya A, Maisuradze A, et al. Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe2(As1−xPx)2. J Supercond Nov Magn. 2013;26:285–295. doi: 10.1007/s10948-012-1743-6
  • Shermadini Z, Luetkens H, Maisuradze A, et al. Superfluid density and superconducting gaps of RbFe2As2 as a function of hydrostatic pressure. Phys Rev B. 2012;86:174516:1–6. doi: 10.1103/PhysRevB.86.174516
  • Guguchia Z, Amato A, Kang J, et al. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor. Nat Commun. 2015;6:8863:1–8. doi: 10.1038/ncomms9863
  • Biswas PK, Guguchia Z, Khasanov R, et al. Strong enhancement of s-wave superconductivity near a quantum critical point of Ca3Ir4Sn13. Phys Rev B. 2015;92:195122:1–8.
  • Guguchia Z, Maisuradze A, Ghambashidze G, Khasanov R, Shengelaya A, Keller H. Tuning the static spin-stripe phase and superconductivity in La2−xBaxCuO4 (x = 1/8) by hydrostatic pressure. New J Phys. 2013;15:093005:1–9. doi: 10.1088/1367-2630/15/9/093005
  • Prando G, Hartmann Th, Schottenhamel W, et al. Mutual independence of critical temperature and superfluid density under pressure in optimally electron-doped superconducting LaFeAsO1−xFx. Phys Rev Lett. 2015;114:247004:1–6. doi: 10.1103/PhysRevLett.114.247004
  • Maisuradze A, Shengelaya A, Amato A, Pomjakushina E, Keller H. Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa2Cu3Ox. Phys Rev B. 2011;84:184523:1–10.
  • Thede M, Mannig A, Mansson M, et al. Pressure-induced quantum critical and multicritical points in a frustrated spin liquid. Phys Rev Lett. 2014;112:087204:1–5. doi: 10.1103/PhysRevLett.112.087204
  • Egetenmeyer N, Gavilano JL, Maisuradze A, et al. Direct observation of the quantum critical point in heavy fermion CeRhSi3. Phys Rev Lett. 2012;108:177204:1–5. doi: 10.1103/PhysRevLett.108.177204
  • Ghannadzadeh S, Möller JS, Goddard PA, et al. Evolution of magnetic interactions in a pressure-induced Jahn–Teller driven magnetic dimensionality switch. Phys Rev B. 2013;87:241102(R):1–5. doi: 10.1103/PhysRevB.87.241102
  • Amitsuka H, Tenya K, Yokoyama M, et al. Inhomogeneous magnetism in URu2Si2 studied by muon spin relaxation under high pressure. Physica B. 2003;326:418–421. doi: 10.1016/S0921-4526(02)01654-X
  • Amato A, Graf MJ, de Visser A, Amitsuka H, Andreica D, Schenck A. Weak-magnetism phenomena in heavy-fermion superconductors: selected μSR studies. J Phys: Condens Matter. 2004;16:S4403–S4420.
  • Bendele M, Amato A, Conder K, et al. Pressure induced static magnetic order in superconducting FeSe1−x. Phys Rev Lett. 2010;104:087003:1–4. doi: 10.1103/PhysRevLett.104.087003
  • Pomjakushina E, Conder K, Pomjakushin V, Bendele M, Khasanov R. Synthesis, crystal structure, and chemical stability of the superconductor FeSe1−x. Phys Rev B. 2009;80:024517:1–7. doi: 10.1103/PhysRevB.80.024517
  • Khasanov R, Conder K, Pomjakushina E, et al. Evidence of nodeless superconductivity in FeSe0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth. Phys Rev B. 2008;78:220510(R):1–81.
  • Wu W, Cheng J, Matsubayashi K, et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat Commun. 2014;5:5508:1–5.
  • Kotegawa H, Nakahara S, Tou H, Sugawara H. Superconductivity of 2.2 K under pressure in helimagnet. CrAs. J Phys Soc Jpn. 2014;83:093702:1–4. doi: 10.7566/JPSJ.83.093702
  • Keller L, White JS, Frontzek M, et al. Pressure dependence of the magnetic order in CrAs: a neutron diffraction investigation. Phys Rev B. 2015;91:020409(R):1–5. doi: 10.1103/PhysRevB.91.020409
  • Watanabe W, Kazama N, Yamaguchi Y, Ohashi M. Magnetic structure of CrAs and Mn-substituted CrAs. J Appl Phys. 1969;40:1128–1129. doi: 10.1063/1.1657559
  • Khasanov R, Guguchia Z, Eremin I, et al. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs. Scientific Reports. 2015;5:13788:1–8. doi: 10.1038/srep13788
  • Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Methods Phys Res A. 2006;567:48–56. doi: 10.1016/j.nima.2006.05.060
  • Stoykov A, Scheuermanna R, Prokscha T, Buehler Ch, Sadygov ZY. A scintillating fiber detector for muon beam profile measurements in high magnetic fields. Nucl Instrum Methods Phys Res A. 2005;550:212–216. doi: 10.1016/j.nima.2005.04.089
  • Stoykov A, Scheuermann R, Sedlak K, Shiroka T, Zhuk V. A new detector system for the ALC spectrometer-first experience with G-APDs in image instrumentation. Physica B. 2009;404:986–989. doi: 10.1016/j.physb.2008.11.211
  • Stoykov A, Scheuermann R, Sedlak K. Fast timing detectors for high field μSR spectrometers. Physica B. 2009;404:990–992. doi: 10.1016/j.physb.2008.11.210
  • Stoykov A, Scheuermann R, Amato A, et al. A lens-coupled scintillation counter in cryogenic environment. JINST. 2011;6:02003:1–14. doi: 10.1088/1748-0221/6/02/P02003
  • Stoykov A, Scheuermann R, Sedlak K, Rodriguez J, Greuter U, Amato A. High-field μSR instrument at PSI: detector solutions. Phys Procedia. 2012;30:7–11. doi: 10.1016/j.phpro.2012.04.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.