Publication Cover
High Pressure Research
An International Journal
Volume 36, 2016 - Issue 4
1,038
Views
92
CrossRef citations to date
0
Altmetric
Articles

PEARL: the high pressure neutron powder diffractometer at ISIS

, , , , &
Pages 493-511 | Received 30 Jun 2016, Accepted 15 Jul 2016, Published online: 05 Aug 2016

References

  • Guthrie M. Future directions in high-pressure neutron diffraction. J Phys Condens Mat. 2015;27:153201. doi: 10.1088/0953-8984/27/15/153201
  • Klotz S. Techniques in high pressure neutron scattering. Boca Raton, FL: CRC Press, Taylor and Francis; 2013.
  • McWhan DB, Bloch D, Parisot G. Apparatus for neutron diffraction at high pressure. Rev Sci Inst. 1974;45:643–646. doi: 10.1063/1.1686704
  • Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S. Neutron powder diffraction above 10 GPa. Phys. B. 1992;180:907–910. doi: 10.1016/0921-4526(92)90505-M
  • Khovstantsev LG. A verkh-niz (up-down) toriod device for generation of high pressure. High Temp High Press. 1984;16:165–169.
  • Klotz S, Besson JM, Hamel G, et al. Neutron powder diffraction at pressures beyond 25 GPa. Appl Phys Lett. 1995;66:1735–1737. doi: 10.1063/1.113350
  • Scintacor. Available from: http://www.scintacor.com/.
  • Klotz S, Hamel G, Frelat J. A new type of compact large-capacity press for neutron and X-ray scattering. High Press Res. 2004;24:219–223. doi: 10.1080/08957950410001661963
  • Arnold O, Bilheux JC, Borreguero JM, et al. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nucl Instrum Meth A. 2014;764:156–166. doi: 10.1016/j.nima.2014.07.029
  • Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2001;34:210–213. doi: 10.1107/S0021889801002242
  • Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I
  • Coelho A, TOPAS-Academic: General profile and structure analysis software for powder diffraction data. Version 5.0 Brisbane, Australia, 2012.
  • Khovstantsev LG, Slesarev VN, Brazhkin VV. Toroid type high-pressure device: history and prospects. High Press Res. 2004;24:371–383. doi: 10.1080/08957950412331298761
  • Fang J, Bull CL, Loveday JS, Nelmes RJ, Kamanev KV. Strength analysis and optimisation of double-toroidal anvils for high-pressure research. Rev Sci Inst. 2012;83:093902. doi: 10.1063/1.4746993
  • Marshall WG, Francis DJ. Attainment of near-hydrostatic compression conditions using the Paris–Edinburgh cell. J. Appl Crystallogr. 2002;35:122–125. doi: 10.1107/S0021889801018350
  • Piermarini GJ, Block S, Barnett JD. Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys. 1973;5377–5382. doi: 10.1063/1.1662159
  • Klotz S, Paumier L, March GL, Munsch P. The effect of temperature on the hydrostatic limit of 4:1 methanol–ethanol under pressure. High Press Res. 2009;29:649–652. doi: 10.1080/08957950903418194
  • Sidorov VA, Sadykov RA. Hydrostatic limits of Fluorinert liquids used for neutron and transport studies at high pressure. J Phys Condens Mat. 2005;17:S3005–S3008. doi: 10.1088/0953-8984/17/40/002
  • Loveday JS, Hamel G, Nelmes RJ, Klotz S, Guthrie M, Besson JM. Neutron diffraction studies of hydrogen-bonded ices at high pressure. High Press Res. 2000;17:149–155. doi: 10.1080/08957950008245902
  • Bocian A, Bull CL, Hamidov H, Loveday JS, Nelmes RJ, Kamenev KV. Gas loading apparatus for the Paris–Edinburgh press. Rev Sci Inst. 2010;81:093904. doi: 10.1063/1.3480555
  • Bull CL, Bocian A, Hamidov H, Kamenev KV, Nelmes RJ, Loveday JS. Note: Achieving quasi-hydrostatic conditions in large-volume toroidal anvils for neutron scattering to pressures of up to 18 GPa. Rev Sci Inst. 2011;82:076101. doi: 10.1063/1.3606643
  • Klotz S, Philippe J, Bull CL, Loveday JS, Nelmes RJ. A 3 kbar hydrogen-compatible gas loader for Paris–Edinburgh presses. High Press Res. 2013;33:214–220. doi: 10.1080/08957959.2013.773323
  • Wilson RM, Loveday JS, Nelmes RJ, Klotz S, Marshall WG. Attenuation corrections for the Paris–Edinburgh cell. Nucl Inst and Meth A. 1995;354:145–148. doi: 10.1016/0168-9002(94)01038-2
  • Klotz S, Besson JM, Hamel G, Nelmes RJ, Loveday JS, Marshall WG. High pressure neutron diffraction using the Paris–Edinburgh cell: Experimental possibilities and future prospects. High Press Res. 1996;14:249–255. doi: 10.1080/08957959608201409
  • Klotz S, Besson JM, Hamel G, Nelmes RJ, Loveday JS, Marshall WG. Metastable ice VII at low temperature and ambient pressure. Nature. 1999;398:681–684. doi: 10.1038/19480
  • Klotz S, Padmanabhan B, Philippe J, Strässle T. The use of a ‘Bridgman-seal’ for low-temperature hydraulics. High Press Res. 2008;28:621–625. doi: 10.1080/08957950802526774
  • Klotz S, Philippe J, Cochard E. Solidification and viscosity of iso-pentane/n-pentane mixtures at low temperatures and high pressure. J Phys: Appl Phys. 2006;39:1674–1677.
  • Zhao Y, Von Dreele RB, Morgan JG. A high P–T cell assembly for neutron diffraction up to 10 GPa and 1500 K. High Press Res. 1999;16:161–177. doi: 10.1080/08957959908200289
  • Le Godec Y, Dove MT, Francis DJ, et al. Neutron diffraction at simultaneous high temperatures and pressures, with measurement of temperature by neutron radiography. Mineral Mag. 2001;65:737–748. doi: 10.1180/0026461016560005
  • Klotz S, Le Godec Y, Strässle T, Stuhr U. The α–γ–ε triple point of iron investigated by high pressure–high temperature neutron scattering. Appl Phys Lett. 2008;93:091904. doi: 10.1063/1.2976128
  • Moggach SA, Marshall WG, Parsons S. High-pressure neutron diffraction study of L-serine-I and L-serine-II, and the structure of L-serine-III at 8.1 GPa. Acta Crystallogr B. 2006;62:815–825. doi: 10.1107/S010876810601799X
  • Moggach SA, Marshall WG, Rogers DM, Parsons S. How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture: a high-pressure neutron powder diffraction study of ε-glycine. CrystEngComm. 2015;17:5315–5328. doi: 10.1039/C5CE00327J
  • Funnell NP, Marshall WG, Parsons S. Alanine at 13.6 GPa and its pressure-induced amorphisation at 15 GPa. CrystEngComm. 2011;13:5841–5848. doi: 10.1039/c1ce05487b
  • Walker M, Pulham CR, Morrison CA, Allan DR, Marshall WG. Nitric acid dihydrate at ambient and high pressure: an experimental and computational study. Phys Rev B. 2006;73:224110. doi: 10.1103/PhysRevB.73.224110
  • Walker M, Morrison CA, Allan DR, Pulham CR, Marshall WG. A new high pressure phase of sodium formate dihydrate; an experimental and computational study. Dalton Trans. 2007;2014–2019. doi: 10.1039/b613444k
  • Marshall WG, Urquhart AJ, Oswald IDH. Investigation of methacrylic acid at high pressure using neutron diffraction. J Phys Chem B. 2015;119:12147–12154. doi: 10.1021/acs.jpcb.5b07106
  • Johnston BF, Marshall WG, Parsons S, Urquhart AJ, Oswald IDH. Investigation of acrylic acid at high pressure using neutron diffraction. J Phys Chem B. 2014;118:4044–4051. doi: 10.1021/jp502095n
  • Macchi P, Casati N, Marshall WG, Sironi A. The α and β forms of oxalic acid di-hydrate at high pressure: a theoretical simulation and a neutron diffraction study. CrystEngComm. 2010;12:2596–2603. doi: 10.1039/c002471f
  • Loveday JS, Nelmes RJ, Marshall WG, Besson JM, Klotz S, Hamel G. Structure of deuterated ammonia IV. Phys Rev Lett. 1996;76:74–77. doi: 10.1103/PhysRevLett.76.74
  • Nelmes RJ, Loveday JS, Wilson RM, et al. Neutron diffraction study of the structure of deuterated ice VIII to 10 GPa. Phys Rev Lett. 1993;71:1192–1195. doi: 10.1103/PhysRevLett.71.1192
  • Nelmes RJ, Loveday JS, Marshall WG, Hamel G, Besson JM, Klotz S. Multisite disordered structure of ice VII to 20 GPa. Phys Rev Lett. 1998;81:2719–2722. doi: 10.1103/PhysRevLett.81.2719
  • Fortes AD, Wood IG, Tucker MG, Marshall WG. The P–V–T equation of state of D2O ice VI determined by neutron powder diffraction in the range 0 < P < 2.6 GPa and 120 < T < 330 K, and the isothermal equation of state of D2O ice VII from 2 to 7 GPa at room temperature. J Appl Crystallogr. 2012;45:523–534. doi: 10.1107/S0021889812014847
  • Nelmes RJ, Loveday JS, Strässle T, et al. Annealed high-density amorphous ice under pressure. Nature Phys. 2006;2.414–418. doi: 10.1038/nphys313
  • Grundy WM, Binzel RP, Buratti BJ, et al. Surface compositions across Pluto and Charon. Science. 2016;351:aad91891. doi: 10.1126/science.aad9189
  • Howard C, Fortes A. In preparation (2016).
  • Loveday JS, Nelmes RJ, Bull CL, Maynard-Casely HE, Guthrie M. Observation of ammonia dihydrate in the AMH-VI structure at room temperature – possible implications for the outer solar system. High Press Res. 2009;29:396–404. doi: 10.1080/08957950903162057
  • Fortes AD, Wood IG, Vočadlo L, et al. Phase behaviour and thermoelastic properties of perdeuterated ammonia hydrate and ice polymorphs from 0 to 2 GPa. J Appl Crystallogr. 2009;42:846–866. doi: 10.1107/S0021889809027897
  • Maynard-Casely HE, Bull CL, Guthrie M, et al. The distorted close-packed crystal structure of methane A. J Chem Phys. 2010;133: 064504. doi: 10.1063/1.3455889
  • Wilson CW, Bull CL, Stinton G, Loveday JS. Pressure-induced dehydration and the structure of ammonia hemihydrate-II. J Chem Phys. 2012;136: 094506. doi: 10.1063/1.3686870
  • Gromnitskaya EL, Yagafarov OF, Lyapin AG, et al. The high-pressure phase diagram of synthetic epsomite (MgSO4·7H2O and MgSO4·7D2O) from ultrasonic and neutron powder diffraction measurements. Phys Chem Miner. 2013;40:271–285. doi: 10.1007/s00269-013-0567-7
  • Wood IG, Vocadlo L, Dobson DP, et al. Thermoelastic properties of magnesiowustite, (Mg1-xFex)O: determination of the Anderson– Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures. J Appl Crystallogr. 2008;41:886–896. doi: 10.1107/S0021889808025417
  • Klotz S. Neutron diffraction studies on ‘simple’ iron oxides under pressure: Fe3O4, α-Fe2O3, and FeO. Chin Sci Bull. 2014;5241–5250. doi: 10.1007/s11434-014-0587-9
  • Soper AK. Partial structure factors from disordered materials diffraction data: An approach using empirical potential structure refinement. Phys Rev B. 2005;72: 104204. doi: 10.1103/PhysRevB.72.104204
  • Strässle T, Saitta AM, Godec YL, et al. Structure of dense liquid water by neutron scattering to 6.5 GPa and 670 K. Phys Rev Lett. 2006;96: 067801. doi: 10.1103/PhysRevLett.96.067801
  • Kozlenko DP, Golosova NO, Jirák Z, et al. Temperature-and pressure-driven spin-state transitions in LaCoO3. Phys Rev B. 2007;75: 064422.
  • Knight KS, Marshall WG, Hawkins PM. A high-pressure neutron diffraction study of the ferroelastic phase transition in RbCaF3. Phys Chem Miner. 2014;41:461–472. doi: 10.1007/s00269-014-0663-3
  • Millar DIA, Oswald IDH, Barry C, et al. Pressure-cooking of explosives – the crystal structure of ε-RDX as determined by X-ray and neutron diffraction. Chem Commun. 2010;46:5662–5664. doi: 10.1039/c0cc00368a
  • Pulham CR, Millar DIA, Barry C, Marshall WG. Structural characterization of sodium azide and sodium bifluoride at high pressures. Z Kristallogr. 2014;229:259–275.
  • Klotz S, Hamel G, Loveday JS, Nelmes RJ, Guthrie M, Soper AK. Structure of high-density amorphous ice under pressure. Phys Rev Lett. 2002;89:285502. doi: 10.1103/PhysRevLett.89.285502
  • Wilding M, Guthrie M, Bull CL, Tucker MG, McMillan PF. Feasibility of in situ neutron diffraction studies of non-crystalline silicates up to pressures of 25 GPa. J Phys Condens Mat. 2008;20:244122. doi: 10.1088/0953-8984/20/24/244122
  • Bouzid A, Pizzey KJ, Zeidler A, et al. Pressure-induced structural changes in the network-forming isostatic glass GeSe4: An investigation by neutron diffraction and first-principles molecular dynamics. Phys Rev B. 2016;93:014202. doi: 10.1103/PhysRevB.93.014202
  • Tucker MG, Keen DA, Dove MT, Goodwin AL, Hui Q. RMCProfile: reverse Monte Carlo for polycrystalline materials. J Phys Condens Mat. 2007;19: 335218.
  • Playford HY, Tucker MG, Bull CL. Neutron total scattering of crystalline materials in the gigapascal regime. J Appl Crystallogr. 2016; p. Submitted.
  • Boehler R, Guthrie M, Molaison JJ, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33:546–554. doi: 10.1080/08957959.2013.823197

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.