Publication Cover
High Pressure Research
An International Journal
Volume 37, 2017 - Issue 3
209
Views
1
CrossRef citations to date
0
Altmetric
Articles

Crystallization of mesoporous silica SBA-15 in a high pressure hydrothermal environment

, , , &
Pages 345-359 | Received 08 Mar 2017, Accepted 14 Jun 2017, Published online: 06 Jul 2017

References

  • Wu J, Liu X, Tolbert SH. High-pressure stability in ordered mesoporous silicas: rigidity and elasticity through nanometer scale arches. J Phys Chem B. 2000;104:11837–11841. doi: 10.1021/jp002938k
  • Mohanty P, Ortalan V, Browning ND, et al. Direct formation of mesoporous coesite single crystals from periodic mesoporous silica at extreme pressure. Angew Chem Int Ed. 2010;49:4301–4305. doi: 10.1002/anie.201001114
  • Mohanty P, Li D, Liu T, et al. Synthesis of stishovite nanocrystals from periodic mesoporous silica. J Am Chem Soc. 2009;131:2764–2765. doi: 10.1021/ja8075007
  • Martoňák R, Donadio D, Oganov AR, et al. Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nat Mater. 2006;5:623–626. doi: 10.1038/nmat1696
  • Pollock RA, Gor GY, Walsh BR, et al. Role of liquid vs vapor water in the hydrothermal degradation of SBA-15. J Phys Chem C. 2012;116:22802–22814. doi: 10.1021/jp303150e
  • Mayanovic RA, Yan H, Brandt AD, et al. Mechanical and hydrothermal stability of mesoporous materials at extreme conditions. Microporous Mesoporous Mater. 2014;195:161–166. doi: 10.1016/j.micromeso.2014.04.027
  • Schäf O, Ghobarkar H, Garnier A, et al. Synthesis of nanocrystalline low temperature silica polymorphs. Solid State Sci. 2006;8:625–633. doi: 10.1016/j.solidstatesciences.2006.02.037
  • Huang W-L. The nucleation and growth of polycrystalline quartz: pressure effect from 0.05 to 3 GPa. Eur J Miner. 2003;15:843–853. doi: 10.1127/0935-1221/2003/0015-0843
  • Naka S, Inagaki M, Kameyama T, et al. The effect of water on the crystal growth of coesite. J Cryst Growth. 1974;24–25:614–616. doi: 10.1016/0022-0248(74)90389-3
  • Naka S, Ito S, Inagaki M. Kinetic studies of transitions from amorphous silica and quartz to coesite. J Am Ceram Soc. 1974;57:217–219. doi: 10.1111/j.1151-2916.1974.tb10862.x
  • Zhang G, Xu Y, Xu D, et al. Pressure-induced crystallization of amorphous SiO2 with silicon–hydroxy group and the quick synthesis of coesite under lower temperature. High Press Res. 2008;28:641–650. doi: 10.1080/08957950802510091
  • Arasuna A, Okuno M, Mizukami T, et al. The role of water in coesite crystallization from silica gel. Eur J Miner. 2013;25:791–796. doi: 10.1127/0935-1221/2013/0025-2331
  • Mohanty P, Kokoszka B, Liu C, et al. Large-pore periodic mesoporous silicas with crystalline channel walls and exceptional hydrothermal stability synthesized by a general high-pressure nanocasting route. Microporous Mesoporous Mater. 2012;152:214–218. doi: 10.1016/j.micromeso.2011.11.031
  • Stagno V, Mandal M, Yang W, et al. Synthesis of mesostructured stishovite from FDU-12/carbon composite. Microporous Mesoporous Mater. 2014;187:145–149. doi: 10.1016/j.micromeso.2013.12.032
  • Mandal M, Landskron K. Synthetic chemistry with periodic mesostructures at high pressure. Acc Chem Res. 2013;46:2536–2544. doi: 10.1021/ar4000373
  • Bohlen SR, Boettcher AL. The quartz ⇆ coesite transformation: A precise determination and the effects of other components. J Geophys Res Solid Earth. 1982;87:7073–7078. doi: 10.1029/JB087iB08p07073
  • Bose K, Ganguly J. Quartz-coesite transition revisited; reversed experimental determination at 500-1200 degrees C and retrieved thermochemical properties. Am Mineral. 1995;80:231–238. doi: 10.2138/am-1995-3-404
  • Datchi F, Loubeyre P, LeToullec R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys Rev B. 2000;61:6535–6546. doi: 10.1103/PhysRevB.61.6535
  • Liu B, Yang J, Wang Q, et al. Determination of the phase diagram of water and investigation of the electrical transport properties of ices VI and VII. Phys Chem Chem Phys. 2013;15:14364–14369. doi: 10.1039/c3cp51988k
  • Findenegg GH, Jähnert S, Akcakayiran D, et al. Freezing and melting of water confined in silica nanopores. ChemPhysChem. 2008;9:2651–2659. doi: 10.1002/cphc.200800616
  • Stoyanov E, Häussermann U, Leinenweber K. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Press Res. 2010;30:175–189. doi: 10.1080/08957950903422444
  • Trzpit M, Soulard M, Patarin J. Water intrusion in mesoporous silicalite-1: An increase of the stored energy. Microporous Mesoporous Mater. 2009;117:627–634. doi: 10.1016/j.micromeso.2008.08.005
  • Zhu J, Quan Z, Lin Y-S, et al. Porous ice phases with VI and distorted VII structures constrained in nanoporous silica. Nano Lett. 2014;14:6554–6558. doi: 10.1021/nl503165n
  • Burneau A, Gallas JP. Hydroxyl groups on silica surfaces. In: AP Legrand, editor. The surface properties of silicas. New York: J. Wiley & Sons; 1998. p. 147–234.
  • Dubrovinskaia N, Dubrovinsky L. Melting curve of water studied in externally heated diamond-anvil cell. High Press Res. 2003;23:307–311. doi: 10.1080/0895795031000139226
  • Lin J-F, Militzer B, Struzhkin VV, et al. High pressure-temperature Raman measurements of H2O melting to 22 GPa and 900 K. J Chem Phys. 2004;121:8423–8427. doi: 10.1063/1.1784438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.