147
Views
13
CrossRef citations to date
0
Altmetric
Articles

Hydrostatic pressure effects on the structural, elastic and thermodynamic properties of the complex transition metal hydrides A2OsH6 (A = Mg, Ca, Sr and Ba)

, , , , & ORCID Icon
Pages 558-578 | Received 14 Jun 2017, Accepted 04 Sep 2017, Published online: 02 Oct 2017

References

  • Huang B, Bonhomme F, Selvam P, et al. New ternary and quaternary metal hydrides with K2PtCl6-type structures. J Less-Common Met. 1991;171:301–311. doi: 10.1016/0022-5088(91)90152-T
  • Chen P, Xiong ZT, Luo JZ, et al. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420:302–304. doi: 10.1038/nature01210
  • Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–358. doi: 10.1038/35104634
  • Huiberts JN, Griessen R, Rector JH, et al. Yttrium and lanthanum hydride films with switchable optical properties. Nature. 1996;380:231–234. doi: 10.1038/380231a0
  • van Mechelen JLM, Noheda B, Lohstroh W, et al. Mg–Ni–H films as selective coatings: tunable reflectance by layered hydrogenation. Appl Phys Lett. 2004;84:3651–3653. doi: 10.1063/1.1739520
  • Richardson TJ, Slack JL, Armitage RD, et al. Switchable mirrors based on nickel–magnesium films. Appl Phys Lett. 2001;78:3047–3049. doi: 10.1063/1.1371959
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  • Karazhanov SZ, Sheripov U, Ulyashin AG. Classification of hydrides according to features of band structure. Phil Mag. 2009;89:1111–1120. doi: 10.1080/14786430902893163
  • Karazhanov SZ, Ulyashin AG. Similarity of optical properties of hydrides and semiconductors for antireflection coatings. Phil Mag. 2010;90:2925–2937. doi: 10.1080/14786431003745294
  • Nicholson KM, Sholl DS. First-principles screening of complex transition metal hydrides for high temperature applications. Inorg Chem. 2014;53:11833–11848. doi: 10.1021/ic501990p
  • Nicholson KM, Sholl DS. First-principles prediction of new complex transition metal hydrides for high temperature applications. Inorg Chem. 2014;53:11849–11860. doi: 10.1021/ic501992x
  • Bogdanovic B, Reiser A, Schlichte K, et al. Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage. J Alloys Compd. 2002;345:77–89. doi: 10.1016/S0925-8388(02)00308-0
  • Karazhanov SZ, Ulyashin AG, Ravindran P, et al. Semiconducting hydrides. Euro Phys Lett. 2008;82:17006. doi: 10.1209/0295-5075/82/17006
  • Karazhanov SZ, Ravindran P, Vajeeston P, et al. Hydrides as materials for semiconductor electronics. Phil Mag. 2008;88:2461–2476. doi: 10.1080/14786430802360362
  • Karazhanov SZ, Ulyashin AG. Similarity of electronic structure and optical properties of Mg2 NiH4 and Si. Euro Phys Lett. 2008;82:48004. doi: 10.1209/0295-5075/82/48004
  • Karazhanov SZ, Ulyashin AG, Ravindran P, et al. Hydride electronics. Phys Status Solidi A. 2007;204:3538–3544. doi: 10.1002/pssa.200723171
  • Bouras S, Ghebouli B, Benkerri M, et al. Theoretical characterization of quaternary iridium based hydrides NaAeIrH6 (Ae=Ca, Ba and Sr). Mate Chem Phys. 2015;149–150:87–93. doi: 10.1016/j.matchemphys.2014.09.040
  • Kritikos M, Noréus D. Synthesis and characterization of ternary alkaline-earth transition-metal hydrides containing octahedral [Ru(II)H6]4− and [Os(II)H6]4− complexes. J Solid State Chem. 1991;93:256–262. doi: 10.1016/0022-4596(91)90297-U
  • Kadir K, Moser D, Münzel M, et al. Investigation of counterion influence on an octahedral IrH6-complex in the solid state hydrides AAeIrH6 (A = Na, K and Ae = Ca, Sr, Ba, and Eu) with a new structure type. Inorg Chem. 2011;50:11890–11895. doi: 10.1021/ic200662m
  • Moyer RO, Jr, Stanitski C, Tanaka J. Ternary hydrides of calcium and strontium with iridium, rhodium and ruthenium. J Solid State Chem. 1971;3:541–549. doi: 10.1016/0022-4596(71)90100-9
  • Kritikos M, Norbus D, Bogdanovic B, et al. Mg2OsH6—A new ternary hydride with the K2PtCl6-type structure. J Less-Common Met. 1990;161:337–340. doi: 10.1016/0022-5088(90)90045-L
  • Reilly JJ, Wiswall RH. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem. 1968;7:2254–2256. doi: 10.1021/ic50069a016
  • Noreus D, Tarnroos KW, Borje A, et al. Na2PdH2, a hydride with a novel linear [PdH2] complex. J Less-Common Met. 1988;139:233–239. doi: 10.1016/0022-5088(88)90004-5
  • Halilov SV, Singh DJ, Gupta M, et al. Stability and electronic structure of the complex K2PtCl6 – structure hydrides DMH6 (D=Mg,Ca,Sr; M=Fe,Ru,Os). Phys Rev B. 2004;70:613. doi: 10.1103/PhysRevB.70.195117
  • Didisheim JJ, Zolliker P, Yvon K, et al. Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedral FeH64− anions. Inorg Chem. 1984;23:1953–1957. doi: 10.1021/ic00181a032
  • Orgaz E, Aburto A. Electronic structure of ternary ruthenium-based hydrides. J Phys Chem C. 2008;112:15586–15594. doi: 10.1021/jp8035605
  • Orgaz E, Gupta M. The electronic properties of intermetallic hydrides with the K2PtCl6 structure. J Phys Condens Matter. 1993;5:6697–6718. doi: 10.1088/0953-8984/5/36/025
  • Clark SJ, Segall MD, Pickard CJ, et al. Zeitschrift fuer Kristallographie. 2005;220:567.
  • Perdew JP, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Pack JD, Monkhorst HJ. “Special points for Brillouin-zone integrations”—a reply. Phys Rev B. 1977;16:1748–1749. doi: 10.1103/PhysRevB.16.1748
  • Fischer TH, Almlof J. General methods for geometry and wave function optimization. J Phys Chem. 1992;96:9768–9774. doi: 10.1021/j100203a036
  • Blanco MA, Francisco E, Luaña V. GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun. 2004;158:57–72. doi: 10.1016/j.comphy.2003.12.001
  • Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res B. 1978;83:1257–1268. doi: 10.1029/JB083iB03p01257
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71:809–824. doi: 10.1103/PhysRev.71.809
  • Vinet P, Ferrante J, Rose JH, et al. Compressibility of solids. J Geophys Res. 1987;92:9319. doi: 10.1029/JB092iB09p09319
  • Born MH. Dynamical theory of crystal lattices. Oxford: Clarendo; 1956.
  • Voigt W. Lehrbuch der Kristallphysik. Leipzig: Taubner; 1928.
  • Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle (Calculation of the yield strength of solid solutions based on the plasticity condition of single crystals). Angew Z Math Mech. 1929;9:49–58.
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc, London, Sect A. 1952;65:349–354. doi: 10.1088/0370-1298/65/5/307
  • Babu KR, Vaitheeswaran G. Density functional study of electronic structure, elastic and optical properties of MNH2 (M=Li, Na, K, Rb). J Phys: Condens Matter. 2014;26:235503.
  • Mattesini M, Magnuson M, Tasnádi F, et al. Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study. Phy Rev B. 2009;79:396. doi: 10.1103/PhysRevB.79.125122
  • Haines J, Leger J, Bocquillon G. Synthesis and design of superhard materials. Annu Rev Mater Res. 2001;31:1–23. doi: 10.1146/annurev.matsci.31.1.1
  • Pugh SF. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil Mag. 1954;45:823–843. doi: 10.1080/14786440808520496
  • Anderson OL. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids. 1963;24:909–917. doi: 10.1016/0022-3697(63)90067-2
  • Schreiber E, Anderson OI, Soga N. Elastic constants and their measurements. New York: McGraw-Hill; 1974.
  • Ravindran P, Fast L, Korzhavyi PA, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J Appl Phys. 1998;84:4891–4904. doi: 10.1063/1.368733
  • Lloveras P, Castán T, Porta M, et al. Influence of elastic anisotropy on structural nanoscale textures. Phys Rev Lett. 2008;100:159. doi: 10.1103/PhysRevLett.100.165707
  • Every AG. General closed-form expressions for acoustic waves in elastically anisotropic solids. Phys Rev B. 1980;22:1746–1760. doi: 10.1103/PhysRevB.22.1746
  • Zener C. Elasticity and anelasticity of metals. Chicago (IL): University of Chicago Press; 1948.
  • Newnham RE. Properties of materials; anisotropy, symmetry, structure. New York: Oxford University Press; 2005.
  • Chung DH, Buessem WR. Influence of reforming processes on the fracture strength of solids. J Appl Phys. 1967;38:201–204. doi: 10.1063/1.1708955
  • Ranganathan SI, Ostoja-Starzewski M. Universal elastic anisotropy index. Phys Rev Lett. 2008;101:55504. doi: 10.1103/PhysRevLett.101.055504
  • Nye JF. Properties of crystals. Oxford: Oxford University Press; 1985.
  • Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;344:789–839. doi: 10.1002/andp.19123441404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.