Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 1
232
Views
0
CrossRef citations to date
0
Altmetric
Articles

A convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells

, , , , &
Pages 32-40 | Received 23 May 2017, Accepted 16 Oct 2017, Published online: 29 Oct 2017

References

  • Duvall GE, Graham RA. Phase transitions under shock-wave loading. Rev Mod Phys. 1977;49:523–579. doi: 10.1103/RevModPhys.49.523
  • McMillan PF. Materials science: disciplines bound by pressure. Nature (London). 1998;391:539–540. doi: 10.1038/35267
  • Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications. Opt Quantum Electron. 1995;27:1213–1229.
  • McMillan PF. Pressing on: the legacy of Percy W. Bridgman. Nat Mater. 2005;4:715–718. doi: 10.1038/nmat1488
  • Nemat-Nasser S, Choi JY. Strain rate dependence of deformation mechanisms in a Ni–Ti–Cr shape-memory alloy. Acta Mater. 2005;53:449–454. doi: 10.1016/j.actamat.2004.10.001
  • McMillan PF. Chemistry at high pressure. Chem Soc Rev. 2006;35:855–857. doi: 10.1039/b610410j
  • McMillan PF. New materials from high pressure experiments: challenges and opportunities. High Press Res. 2003;23:7–22. doi: 10.1080/0895795031000109733
  • Ward JHR. Simple apparatus for applying uniaxial pressure at very low temperatures. Rev Sci Instrum. 1965;36:1376–1377. doi: 10.1063/1.1719911
  • Endo S, Mitsui T. High pressure X-ray diffraction at liquid-helium temperature. Rev Sci Instrum. 1976;47:1275–1278. doi: 10.1063/1.1134506
  • Webb AW, Gubser DU, Towle LC. Cryostat for generating pressures to 100 kilobar and temperatures to 0.03 K. Rev Sci Instrum. 1976;47:59–62. doi: 10.1063/1.1134491
  • Sakai N, Kajiwara T, Tsuji K, et al. Electrical resistance measurements at high pressure and low temperature using a diamond-anvil cell. Rev Sci Instrum. 1982;53:499–502. doi: 10.1063/1.1136997
  • Connell GAN, Wilson JA, Yoffe AD. Effects of pressure and temperature on exciton absorption and band structure of layer crystals: molybdenum disulphide. J Phys Chem Solids. 1969;30:287–296. doi: 10.1016/0022-3697(69)90310-2
  • Thorwarth E, Dietrich M. High-intensity X-ray diffraction apparatus for pressures up to 100 kilobars and temperatures down to 1.5 K. Rev Sci Instrum. 1979;50:768–771. doi: 10.1063/1.1135923
  • Kobayashi T. Diamond-anvil high-pressure cell for optical spectroscopy at low temperature. Rev Sci Instrum. 1985;56:255–259. doi: 10.1063/1.1138340
  • Skelton EF, Webb AW, Qadri SB, et al. Energy-dispersive X-ray diffraction with synchrotron radiation at cryogenic temperatures. Rev Sci Instrum. 1984;55:849–855. doi: 10.1063/1.1137856
  • Feng YJ, Silevitch DM, Rosenbaum TF. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements. Rev Sci Instrum. 2014;85:033901. doi: 10.1063/1.4867078
  • Daniels WB, Ryschkewitsch MG. Simple double diaphragm press for diamond anvil cells at low temperatures. Rev Sci Instrum. 1983;54:115–116. doi: 10.1063/1.1137223
  • LeToullec R, Pinceaux JP, Loubeyre P. The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Res. 1988;1:77–90. doi: 10.1080/08957958808202482
  • Dewaele A, André R, Occelli F, et al. The α→ ω phase transformation in zirconium followed with ms-scale time-resolved X-ray absorption spectroscopy. High Pressure Res. 2016;36(3):237–249. doi: 10.1080/08957959.2016.1199692
  • Bireckoven B, Wittig J. A diamond anvil cell for the investigation of superconductivity under pressures of up to 50 GPa: Pb as a low temperature manometer. J Phys E: Sci Instrum. 1988;21:841–848. doi: 10.1088/0022-3735/21/9/004
  • Hemmes H, Driessen A, Kos J, et al. Synthesis of metal hydrides and in situ resistance measurements in a high-pressure diamond anvil cell. Rev Sci Instrum. 1989;60:474–480. doi: 10.1063/1.1140402
  • Endo S, Mishima O, Ohno Y, et al. Diamond-Anvil cell equipped with a worm gear intensifier for pressure generation at low temperature. Jpn J Appl Phys Part 2. 1982;21:L702–L704. doi: 10.1143/JJAP.21.L702
  • Leroux M, Leymarie J, Meheut G, et al. Optical spectroscopy at cryogenic temperatures using a block-piermarini diamond-anvil cell. Rev Sci Instrum. 1988;59:772–775. doi: 10.1063/1.1139826
  • Baggen M, Manuputy R, Scheltema R, et al. Diamond anvil cell and loading system for liquid CO2. Rev Sci Instrum. 1988;59:2592–2595. doi: 10.1063/1.1139903
  • Silvera IF, Wijngaarden RJ. Diamond anvil cell and cryostat for low-temperature optical studies. Rev Sci Instrum. 1985;56:121–124. doi: 10.1063/1.1138514
  • Lee GW, Evans WJ, Yoo CS. Crystallization of water in a dynamic diamond-anvil cell: evidence for ice VII-like local order in supercompressed water. Phys Rev B. 2006;74:169.
  • Evans WJ, Yoo CS, Lee GW, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. Rev Sci Instrum. 2007;78:073904. doi: 10.1063/1.2751409
  • Sinogeikin SV, Smith JS, Rod E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells. Rev Sci Instrum. 2015;86:072209. doi: 10.1063/1.4926892
  • Chen JY, Yoo CS. High pressure kinetics studies of water solidification in dynamic-DAC. J Phys: Conf Ser. 2012;377:012109.
  • Lee GW, Evans WJ, Yoo CS. Dynamic pressure-induced dendritic and shock crystal growth of ice VI. Proc Natl Acad Sci. 2007;104:9178–9181. doi: 10.1073/pnas.0609390104
  • Chen JY, Yoo CS. High density amorphous ice at room temperature. Proc Natl Acad Sci. 2011;108:7685–7688. doi: 10.1073/pnas.1100752108
  • Chen JY, Kim M, Yoo CS, et al. Time-resolved X-ray diffraction across water-ice-VI/VII transformations using the dynamic-DAC. J Phys Conf Ser. 2014;500:142006. doi: 10.1088/1742-6596/500/14/142006
  • Chen JY, Yoo CS. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics. J Chem Phys. 2012;136:114513. doi: 10.1063/1.3695212
  • Chen JY, Yoo CS, Evans WJ, et al. Solidification and fcc to metastable hcp phase transition in krypton under variable compression rates. Phys Rev B. 2014;90:144104. doi: 10.1103/PhysRevB.90.144104
  • Tomasino D, Yoo CS. Solidification and crystal growth of highly compressed hydrogen and deuterium: time-resolved study under ramp compression in dynamic-diamond anvil cell. Appl Phys Lett. 2013;103:061905. doi: 10.1063/1.4818311
  • Mariano AN, Chopra KL. Polymorphism in some IV–VI compounds induced by high pressure and thin-film epitaxial growth. Appl Phys. 1967;10:282–284.
  • Chattopadhyay T, Werner A, Schnering HG, et al. Temperature and pressure induced phase transition in IV-VI compounds. Rev Phys Appl (Paris). 1984;19:807–813. doi: 10.1051/rphysap:01984001909080700
  • Chattopadhyay T, Schnering HG, Grosshans WA, et al. High pressure X-ray diffraction study on the structural phase transitions in PbS, PbSe and PbTe with synchrotron radiation. Physica B+C. 1986;139–140:356–360. doi: 10.1016/0378-4363(86)90598-X
  • Maclean J, Hatton PD, Piltz RO, et al. Structural studies of semiconductors at very high pressures. Nucl Instr Methods Phys Res B. 1995;97:354–357. doi: 10.1016/0168-583X(95)00277-4
  • Knorr K, Ehm L, Hytha M, et al. The high-pressure α/β phase transition in lead sulphide (PbS). Eur Phys J B. 2003;31:297–303. doi: 10.1140/epjb/e2003-00034-6
  • Fan DW, Zhou WG, Wei SY, et al. Phase relations and pressure-volume-temperature equation of state of galena. Chin Phys Lett. 2010;27:086401. doi: 10.1088/0256-307X/27/8/086401
  • Grzechnik A, Friese K. Pressure-induced orthorhombic structure of PbS. J Phys: Condens Matter. 2010;22:095402.
  • Wang SM, Zhang JZ, Zhang Y, et al. Phase-Transition induced elastic softening and band gap transition in semiconducting PbS at high pressure. Inorg Chem. 2013;52:8638–8643. doi: 10.1021/ic400801s
  • Ahuja R. High pressure structural phase transitions in IV–VI semiconductors. Phys Stat Sol (b). 2003;235:341–347. doi: 10.1002/pssb.200301583
  • Bencherif Y, BouKra A, Zaoui A, et al. High-pressure phases of lead chalcogenides. Mater Chem Phys. 2011;126:707–710. doi: 10.1016/j.matchemphys.2010.12.056
  • Zagorac D, Doll K, Schön JC, et al. Ab initio structure prediction for lead sulfide at standard and elevated pressures. Phyc Rev B. 2011;84:045206. doi: 10.1103/PhysRevB.84.045206
  • Demeray F, Berber S. Ab initio investigation of B16(GeS), B27(FeB) and B33(CrB/TII) phases of lead chalcogenides. Phys Scr. 2013;88:015603. doi: 10.1088/0031-8949/88/01/015603
  • Li Y, Lin C, Xu J, et al. Structures of two intermediate phases between the B1 and B2 phases of PbS under high pressure. AIP Adv. 2014;4:127112. doi: 10.1063/1.4903767
  • Hammersley J. Fit2d user manual 1996. Grenoble: ESRF.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.