Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 2
219
Views
1
CrossRef citations to date
0
Altmetric
Articles

Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa

, &
Pages 99-106 | Received 27 Nov 2017, Accepted 26 Jan 2018, Published online: 05 Feb 2018

References

  • Stacey F, Anderson O. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Phys Earth Planet Inter. 2001;124(3):153–162. doi: 10.1016/S0031-9201(01)00186-8
  • Stacey F, Loper D. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys Earth Planet Inter. 2007;161(1):13–18. doi: 10.1016/j.pepi.2006.12.001
  • Matula R. Electrical resistivity of copper, gold, palladium, and silver. J Phys Chem Ref Data. 1979;8(4):1147–1298. doi: 10.1063/1.555614
  • Secco R. High p, T physical property studies of earth’s interior: thermoelectric power of solid and liquid Fe up to 6.4 GPa. Can J Phys. 1995;73(5–6):287–294. doi: 10.1139/p95-040
  • Ezenwa I, Secco R. Constant electrical resistivity of Zn along the melting boundary up to 5 GPa. High Press Res. 2017;37(3):319–333. doi: 10.1080/08957959.2017.1340473
  • Vijayakumar M, Sriramamurthy A, Naidu S. Calculated phase diagrams of Cu-W, Ag-W and Au-W binary systems. Calphad. 1988;12(2):177–184. doi: 10.1016/0364-5916(88)90019-3
  • Scientific Group Thermodata Europe (SGTE). Ag-W (silver-tungsten). In: Franke P, Neuschütz D, editor. Binary systems. Part 5: binary systems supplement 1. Berlin: Springer; 2007. p. 1–2.
  • Karakaya I, Thompson W. The Ag−Re (silver-rhenium) system. Bull Alloy Phase Diagrams. 1988;9(3):243–244. doi: 10.1007/BF02881272
  • Predel B. Ag-Re (silver – rhenium). In: Predel B, editor. Ac-Ag … Au-Zr. Landolt-Börnstein - group IV physical chemistry (numerical data and functional relationships in science and technology), vol 12A.. Berlin: Springer; 2006. p. 1.
  • Secco R, Schloessin H. The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J Geophys Res Solid Earth. 1989;94(B5):5887–5894. doi: 10.1029/JB094iB05p05887
  • Ezenwa I, R S. Electronic transition in solid Nb at high pressure and temperature. J Appl Phys. 2017;121(22):225903. doi: 10.1063/1.4985548
  • Mirwald P, Kennedy G. The melting curve of gold, silver, and copper to 60-kbar pressure: a reinvestigation. J Geophys Res. 1979;84(B12):6750–6756. doi: 10.1029/JB084iB12p06750
  • Hieu H, Ha N. High pressure melting curves of silver, gold and copper. AIP Adv. 2013;3(11):112125. doi: 10.1063/1.4834437
  • Akella J, Kennedy G. Melting of gold, silver, and copper-proposal for a new high-pressure calibration scale. J Geophys Res. 1971;76(20):4969–4977. doi: 10.1029/JB076i020p04969
  • Errandonea D. The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys. 2010;108(3):033517. doi: 10.1063/1.3468149
  • Pham D, Pham D, Nguyen H, et al. Melting of metals copper, silver and gold under pressure. In: Chi Minh H, editor. Proceedings of the 35th national conference of theoretical physics; August 2–6. Hanoi: Institute of Physics (VVL); 2010. p. 148–152.
  • Mitra N, Decker D, Vanfleet H. Melting curves of copper, silver, gold, and platinum to 70 kbar. Phys Rev. 1967;161(3):613–617. doi: 10.1103/PhysRev.161.613
  • Shoenberg D. The de Haas-van Alphen effect in copper, silver and gold. Philos Mag. 1960;5(50):105–110. doi: 10.1080/14786436008243292
  • Shoenberg D. The Fermi surfaces of copper, silver and gold I. The de Haas-van Alphen effect. Philos Trans R Soc London Ser A. 1962;255(1052):85–133. doi: 10.1098/rsta.1962.0011
  • Ziman J. The ordinary transport properties of the noble metals. Adv Phys. 1961;10(37):1–56. doi: 10.1080/00018736100101251
  • Ziman J. The electron transport properties of pure liquid metals. Adv Phys. 1967;16(64):551–580. doi: 10.1080/00018736700101665
  • Roaf D. The Fermi surfaces of copper, silver and gold II. Calculation of the Fermi surfaces. Philos Trans R Soc London Ser A. 1962;255(1052):135–152. doi: 10.1098/rsta.1962.0012
  • Mott N. Electrons in transition metals. Adv Phys. 1964;13(51):325–422. doi: 10.1080/00018736400101041
  • Halse M. The Fermi surfaces of the noble metals. Philos Trans R Soc London Ser A. 1969;265(1167):507–532. doi: 10.1098/rsta.1969.0064
  • Zallen R. 1966. The effect of pressure on optical properties of the noble metals. In: Abelés F, editor. Optical properties and electronic structure of metals and alloys: proceedings of the international colloquium; 1965 September 13–16. Paris: North-Holland; 1966. p. 164–174.
  • Cusack N. The electronic properties of liquid metals. Rep Prog Phys. 1963;26(1):361–409. doi: 10.1088/0034-4885/26/1/310
  • Ezenwa I, Secco R, Yong W, et al. Electrical resistivity of solid and liquid Cu up to 5 GPa: decrease along the melting boundary. J Phys Chem Solids. 2017;110:386–393. doi: 10.1016/j.jpcs.2017.06.030
  • Klemens P, Williams R. Thermal conductivity of metals and alloys. Int Metal Rev. 1986;31(5):197–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.