Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 3
181
Views
8
CrossRef citations to date
0
Altmetric
Articles

Adiabatic compression heating of selected organic solvents under high pressure processing

ORCID Icon, , , , &
Pages 325-336 | Received 01 Apr 2018, Accepted 06 Jun 2018, Published online: 28 Jun 2018

References

  • Elamin WM, Endan JB, Yosuf YA, et al. High pressure processing technology and equipment evolution: a review. J Eng Sci Tech Rev. 2015;8(5):75–83.
  • Alexandre EMC, Araujo P, Duarte MF, et al. Experimental design, modeling, and optimization of high-pressure-assisted extraction of bioactive compounds from pomegranate peel. Food Bioprocess Tech. 2017;10(5):886–900. doi: 10.1007/s11947-017-1867-6
  • Li JP, Sun W, Ramaswamy HS, et al. High pressure extraction of Astaxanthin from shrimp waste (Penaeus vannamei boone): effect on yield and antioxidant activity. J Food Process Eng. 2017;40(2):e12353. doi: 10.1111/jfpe.12353
  • Zhang S, Xi J, Wang C. High hydrostatic pressure extraction of flavonoids from propolis. J Chem Technol Biot. 2005;80(1):50–54. doi: 10.1002/jctb.1153
  • Zhang S, Zhu J, Wang C. Novel high pressure extraction technology. Int J Pharm. 2004;278(2):471–474. doi: 10.1016/j.ijpharm.2004.02.029
  • Huang HW, Hsu CP, Yang BB, et al. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Tech. 2013;33(1):54–62. doi: 10.1016/j.tifs.2013.07.001
  • Xi J. Ultrahigh pressure extraction of bioactive compounds from plants-a review. Crit Rev Food Sci. 2017;57(6):1097–1106. doi: 10.1080/10408398.2013.874327
  • Denys S, Ludikhuyze LR, Van Loey AM, et al. Modeling conductive heat transfer and process uniformity during batch high-pressure processing of foods. Biotechnol Progr. 2000;16(1):92–101. doi: 10.1021/bp990123r
  • Knoerzer K, Buckow R, Sanguansri P, et al. Adiabatic compression heating coefficients for high-pressure processing of water, propylene-glycol and mixtures – a combined experimental and numerical approach. J Food Eng. 2010;96(2):229–238. doi: 10.1016/j.jfoodeng.2009.07.017
  • Denys S, Hendrickx ME. Measurement of the thermal conductivity of foods at high pressure. J Food Sci. 1999;64(4):709–713. doi: 10.1111/j.1365-2621.1999.tb15116.x
  • Nguyen LT, Balasubramaniam VM, Sastry SK. Determination of in-situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure. Int J Food Prop. 2012;15(1):169–187. doi: 10.1080/10942911003754726
  • Ramaswamy R, Balasubramaniam VM, Sastry SK. Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa. J Food Eng. 2007;83(3):444–451. doi: 10.1016/j.jfoodeng.2007.04.006
  • Werner M, Baars A, Eder C, et al. Thermal conductivity and density of plant oils under high pressure. J Chem Eng Data. 2008;53(7):1444–1452. doi: 10.1021/je700685q
  • Zhu S, Marcotte M, Ramaswamy H, et al. Evaluation and comparison of thermal conductivity of food materials at high pressure. Food Bioprod Process. 2008;86(3):147–153. doi: 10.1016/j.fbp.2006.08.001
  • Zhu S, Ramaswamy HS, Marcotte M, et al. Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method. J Food Sci. 2007;72(2):E49–56. doi: 10.1111/j.1750-3841.2006.00243.x
  • Bridgman PW. Thermodynamic properties of liquid water to 80°C and 12000 kgm. Proc Am Acad Arts Sci. 1912;48(9):309–362. doi: 10.2307/20022832
  • Lemmon EW, Huber ML, Mclinden MO. NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.0. 2010.
  • Buzrul S, Alpas H, Largeteau A, et al. Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. J Food Eng. 2008;85(3):466–472. doi: 10.1016/j.jfoodeng.2007.08.014
  • Buzrul S, Alpas H, Largeteau A, et al. Mathematical expression of the temperature profile and experimental determination of compression heating of ethylene glycol during high hydrostatic pressure processing. High Pressure Res. 2007;27(1):93–99. doi: 10.1080/08957950601079769
  • Casulli KE, Dhakal S, Sandeep KP, et al. Compression heating of selected polymers during high-pressure processing. J Food Process Eng. 2017;40(2):e12417. doi: 10.1111/jfpe.12417
  • Knoerzer K, Buckow R, Versteeg C. Adiabatic compression heating coefficients for high-pressure processing – a study of some insulating polymer materials. J Food Eng. 2010;98(1):110–119. doi: 10.1016/j.jfoodeng.2009.12.016
  • Landfeld A, Strohalm J, Halama R, et al. Quasi-adiabatic compression heating of selected foods. High Pressure Res. 2011;31(1):140–147. doi: 10.1080/08957959.2010.533372
  • Patazca E, Koutchma T, Balasubramaniam VM. Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng. 2007;80(1):199–205. doi: 10.1016/j.jfoodeng.2006.05.014
  • Ramaswamy R, Balasubramaniam VM. Effect of polarity and molecular structure of selected liquids on their heat of compression during high pressure processing. High Pressure Res. 2007;27(2):299–307. doi: 10.1080/08957950701385926
  • Rasanayagam V, Balasubramaniam VM, Ting E, et al. Compression heating of selected fatty food materials during high-pressure processing. J Food Sci. 2003;68(1):254–259. doi: 10.1111/j.1365-2621.2003.tb14148.x
  • Park SH, Jun S. Practical estimation of the in situ physical properties of foods under high pressure. Food Sci Biotechnol. 2015;24(3):777–782. doi: 10.1007/s10068-015-0101-4
  • Bundy FP. Effect of pressure on emf of thermocouples. J Appl Phys. 1961;32(3):483–488. doi: 10.1063/1.1736029
  • Shao Y, Zhu S, Ramaswamy H, et al. Compression heating and temperature control for high-pressure destruction of bacterial spores: an experimental method for kinetics evaluation. Food Bioprocess Tech. 2010;3(1):71–78. doi: 10.1007/s11947-008-0057-y
  • Min S, Sastry SK, Balasubramaniam VM. Compressibility and density of select liquid and solid foods under pressures up to 700 MPa. J Food Eng. 2010;96(4):568–574. doi: 10.1016/j.jfoodeng.2009.09.003
  • Bridgman PW. Thermodynamic properties of twelve liquids between 20°C and 80°C and up to 12000 kgm. per sq. cm. Proc Am Acad Arts Sci. 1913;49(1):3–114. doi: 10.2307/20025445
  • Pruzan P, Dahan N. Specific heat of liquid hexane up to 500 MPa and from 243 to 473 K from the heat of compression. High Pressure Res. 1990;4(1–6):546–548. doi: 10.1080/08957959008246183
  • Khurana M, Karwe MV. Numerical prediction of temperature distribution and measurement of temperature in a high hydrostatic pressure food processor. Food Bioprocess Tech. 2009;2(3):279–290. doi: 10.1007/s11947-008-0096-4
  • Knoerzer K, Juliano P, Gladman S, et al. A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. AIChE J. 2007;53(11):2996–3010. doi: 10.1002/aic.11301

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.