Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 4
218
Views
14
CrossRef citations to date
0
Altmetric
Articles

Decreasing electrical resistivity of gold along the melting boundary up to 5 GPa

, ORCID Icon & ORCID Icon
Pages 367-376 | Received 02 Feb 2018, Accepted 18 Jun 2018, Published online: 02 Jul 2018

References

  • Stacey F, Anderson O. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Phys Earth Planet Inter. 2001;124:153–162. doi: 10.1016/S0031-9201(01)00186-8
  • Stacey F, Loper D. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys Earth Planet Inter. 2007;161:13–18. doi: 10.1016/j.pepi.2006.12.001
  • Ezenwa I, Secco R. Constant electrical resistivity of Zn along the melting boundary up to 5 GPa. High Press Res. 2017;37(3):319–333. doi: 10.1080/08957959.2017.1340473
  • Ezenwa I, Secco R, Yong W, et al. Electrical resistivity of Cu up to 5 GPa: decrease along the melting boundary. J Phys Chem Solids. 2017;110:386–393. doi: 10.1016/j.jpcs.2017.06.030
  • Littleton JAH, Secco RA, Yong W. Decreasing electrical resistivity of silver along the melting boundary up to 5 GPa. High Press Res. 2018 ( in press).
  • Ezenwa I, Secco R. Invariant electrical resistivity of Co along the melting boundary. Earth Planet Sci Lett. 2017;474:120–127. doi: 10.1016/j.epsl.2017.06.032
  • Silber RE, Secco R, Yong W. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa. J Geophys Res. 2017;122(7):5064–5081. doi: 10.1002/2017JB014259
  • Matula R. Electrical resistivity of copper, gold, palladium and silver. J Phys Chem Ref Data. 1979;8:1147–1298. doi: 10.1063/1.555614
  • Akella J, Kennedy GC. Melting of gold, silver and copper – proposal for a new high-pressure calibration scale. J Geophys Res. 1971;76(20):4969–4977. doi: 10.1029/JB076i020p04969
  • Arafin S, Singh RN, George AK. Melting of metals under pressure. Physica B. Elsevier Ltd. 2013;419:40–44. doi: 10.1016/j.physb.2013.03.013
  • Decker DL, Vanfleet HB. Melting and high-temperature electrical resistance of gold under pressure. Phys Rev. 1964;138:1A.
  • Errandonea D. The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys. 2010;108(3):033517. doi: 10.1063/1.3468149
  • Hieu HK, Ha NN. High pressure melting curves of silver, gold and copper. Am Inst Phys Adv. 2013;3:112125.
  • Mirwald PW, Kennedy GC. The melting curve of gold, silver, and copper to 60-kbar pressure: A reinvestigation. J Geophys Res. 1979;84:B12.
  • Mitra NR, Decker DL, Vanfleet HB. Melting curves of copper, silver, gold, platinum to 70 kbar. Phys Rev. 1967;161:613–617. doi: 10.1103/PhysRev.161.613
  • Tam PD, Tan PD, Hoc NQ, et al. Melting of metals copper, silver and gold under pressure. Proceedings of the 35th National Conference Theoretical Physics; 2010. p. 148–152.
  • Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements. J Phys Chem Ref Data. 1972;1(2):340. doi: 10.1063/1.3253100
  • De Koker N, Steinle-Neumann G, Vlček V. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth’s core. Proc Natl Acad Sci USA. 2012;109:4070–4073. doi: 10.1073/pnas.1111841109
  • Pozzo M, Davies C, Gubbins D, et al. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature. 2012;485:355–358. doi: 10.1038/nature11031
  • Pozzo M, Davies C, Gubbins D, et al. Transport properties for liquid silicon-oxygen-iron mixtures at Earth’s core conditions. Phys Rev B. 2012b;87:014110.
  • Secco R, High P. T physical property studies of Earth’s interior: thermoelectric power of solid and liquid Fe up to 6.4 GPa. Can J Phys. 1995;73(5–6):287–294. doi: 10.1139/p95-040
  • Secco R, Schloessin H. The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J Geophys Res B: Solid Earth. 1989;94(B5):5887–5894. doi: 10.1029/JB094iB05p05887
  • Ezenwa I, Secco R. Electronic transition in solid Nb at high pressure and temperature. J Appl Phys. 2017;121(22):225903. doi: 10.1063/1.4985548
  • Klemens P, Williams R. Thermal conductivity of metals and alloys. Int Metal Rev. 1986;31(5):197–215.
  • Shoenberg D. The de Haas-van Alphen effect in copper, silver and gold. Philos Mag. 1960;5(50):105–110. doi: 10.1080/14786436008243292
  • Mott N. Electrons in transition metals. Adv Phys. 1964;13(51):325–422. doi: 10.1080/00018736400101041
  • Abdou HE, Mohamed AA, Fackler JP. Gold(I) nitrogen chemistry. In: Mohr F, editor. Gold chemistry: applications and future directions in the life sciences. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KGaA; 2009. p. 183–248.
  • Zallen R. The effect of pressure on optical properties of the noble metals. In: Abelés F, editor. Optical properties and electrical structure of metals and alloys: proceedings of the international colloquium; 1965 Sept 13–16; Paris, FRA. Amsterdam (NL): North-Holland Publishing; 1966. p. 164–174.
  • Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements: A comprehensive review. J Phys Chem Ref Data. 1974;3(1):I–310.
  • Secco RA. Thermal conductivity and Seebeck coefficient of Fe and Fe-Si alloys: implications for variable Lorenz number. Phys Earth Planet Inter. 2017;265:23–34. doi: 10.1016/j.pepi.2017.01.005
  • Heinz DL, Jeanloz R. The equation of state of the gold calibration standard. J Appl Phys. 1984;55:885–893. doi: 10.1063/1.333139
  • Singh RN, Arafin S, George SK. Temperature-dependent thermo-elastic properties of s-, p- and d-block liquid metals. J Phys Condens Matter. 2007;B387:344–351.
  • Gomi H, Ohta K, Hirose K, et al. The high conductivity of iron and thermal evolution of the Earth’s core. Phys Earth Planet Inter. 2013;224:88–103. doi: 10.1016/j.pepi.2013.07.010
  • Ohta K, Kuwayama Y, Hirose K, et al. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature. 2016;534:95–98. doi: 10.1038/nature17957
  • Gomi H, Hirose K, Akai H, et al. Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: Chemically-induced resistivity saturation in the Earth’s core. Earth Planet Sci Lett. 2016;451:51–61. doi: 10.1016/j.epsl.2016.07.011
  • Konôpková Z, McWilliams RS, Gómez-Pérez N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature. 2016;534:99–101. doi: 10.1038/nature18009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.