Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 4
499
Views
11
CrossRef citations to date
0
Altmetric
Articles

Clamp cell with in situ pressure monitoring for low-temperature neutron scattering measurements

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 482-492 | Received 11 Jul 2018, Accepted 31 Aug 2018, Published online: 20 Sep 2018

References

  • Boehler R, Guthrie M, Molaison J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa. High Press Res. 2013;33(3):546–554. doi: 10.1080/08957959.2013.823197
  • Guthrie M, Boehler R, Tulk CA, et al. Neutron diffraction observations of interstitial protons in dense ice. Proc Natl Acad Sci USA. 2013;110(26):10552–10556. doi: 10.1073/pnas.1309277110
  • Boehler R, Molaison JJ, Haberl B. Novel diamond cells for neutron diffraction using multi-carat CVD anvils. Rev Sci Instrum. 2017;88(8):083905. doi: 10.1063/1.4997265
  • Tafti FF, Juneau-Fecteau A, Delage ME, et al. Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2. Nat Phys. 2013;9:349–352. doi: 10.1038/nphys2617
  • Chen Y, Jiang WB, Guo CY, et al. Reemergent superconductivity and avoided quantum criticality in Cd-doped CeIrIn5 under pressure. Phys Rev Lett. 2015;114:146403.
  • Luo Y, Ronning F, Wakeham N, et al. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2−δAs2. Proc Natl Acad Sci USA. 2015;112(44):13520–13524. doi: 10.1073/pnas.1509581112
  • Fujiwara N, Kawaguchi N, IImura S, et al. Quantum phase transition under pressure in the heavily hydrogen-doped iron-based superconductor LaFeAsO. Phys Rev B. 2017;96:140507. doi: 10.1103/PhysRevB.96.140507
  • Li W, Wei XY, Zhu JX, et al. Pressure-induced topological quantum phase transition in Sb2Se3. Phys Rev B. 2014;89:035101.
  • Cai PL, Hu J, He LP, et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study. Phys Rev Lett. 2015;115:057202.
  • Cheng J, Kweon KE, Larregola SA, et al. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO3. Proc Natl Acad Sci USA. 2015;112(6):1670–1674. doi: 10.1073/pnas.1424431112
  • Oka K, Azuma M, Chen W, et al. Pressure-induced spin-state transition in BiCoO3. J Am Chem Soc. 2010;132(27):9438–9443. doi: 10.1021/ja102987d
  • Klotz S. Techniques in high pressure neutron scattering. Boca Raton: CRC Press/ Taylor & Francis Group; 2013.
  • Decker DL. High-pressure equation of state for NaCl, KCl, and CsCl. J Appl Phys. 1971;42(8):3239–3244. doi: 10.1063/1.1660714
  • Forman RA, Piermarini GJ, Barnett JD, et al. Pressure measurement made by the utilization of ruby sharp-line luminescence. Science. 1972;176(4032):284–285. doi: 10.1126/science.176.4032.284
  • Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res Solid Earth. 1986;91(B5):4673–4676. doi: 10.1029/JB091iB05p04673
  • Vos WL, Schouten JA. On the temperature correction to the ruby pressure scale. J Appl Phys. 1991;69(9):6744–6746. doi: 10.1063/1.348903
  • Syassen K. Ruby under pressure. High Press Res. 2008;28(2):75–126. doi: 10.1080/08957950802235640
  • Goncharov AF, Zaug JM, Crowhurst JC, et al. Optical calibration of pressure sensors for high pressures and temperatures. J Appl Phys. 2005;97(9):094917. doi: 10.1063/1.1895467
  • Datchi F, LeToullec R, Loubeyre P. Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures. J Appl Phys. 1997;81(8):3333–3339. doi: 10.1063/1.365025
  • Lacam A, Chateau C. High-pressure measurements at moderate temperatures in a diamond anvil cell with a new optical sensor: SrB4O7:Sm2+. J Appl Phys. 1989;66(1):366–372. doi: 10.1063/1.343884
  • Barnett JD, Block S, Piermarini GJ. An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell. Rev Sci Instrum. 1973;44(1):1–9. doi: 10.1063/1.1685943
  • Stone MB, Niedziela JL, Abernathy DL, et al. A comparison of four direct geometry time-of-flight spectrometers at the spallation neutron source. Rev Sci Instr. 2014;85(4):045113. doi: 10.1063/1.4870050
  • Ehlers G, Podlesnyak A, Niedziela JL, et al. The new cold neutron chopper spectrometer at the spallation neutron source: design and performance. Rev Sci Instrum. 2011;82:085108. doi: 10.1063/1.3626935
  • Ehlers G, Podlesnyak A, Kolesnikov AI. The cold neutron chopper spectrometer at the spallation neutron source - a review of the first 8 years of operation. Rev Sci Instrum. 2016;87:093902. doi: 10.1063/1.4962024
  • Winn B, Filges U, Garlea VO, et al. Recent progress on HYSPEC, and its polarization analysis capabilities. EPJ Web Conf. 2015;83:03017. doi: 10.1051/epjconf/20158303017
  • Granroth G, Kolesnikov A, Sherline T, et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. J Phys: Conf Ser. 2010;251(1):012058.
  • Seeger PA, Daemen LL, Larese JZ. Resolution of VISION, a crystal-analyzer spectrometer. Nucl Instr Meth A. 2009;604:719–728. doi: 10.1016/j.nima.2009.03.204
  • Abernathy DL, Stone MB, Loguillo MJ, et al. Design and operation of the wide angular-range chopper spectrometer ARCS at the spallation neutron source. Rev Sci Instrum. 2012;83(1):015114. doi: 10.1063/1.3680104
  • Uwatoko Y, Todo S, Ueda K, et al. Material properties of Ni–Cr–Al alloy and design of a 4 GPa class non-magnetic high-pressure cell. J Phys: Condens Matter. 2002;14(44):11291.
  • Fujiwara N, Matsumoto T, Nakazawab K, et al. Fabrication and efficiency evaluation of a hybrid nicral pressure cell up to 4 gpa. Rev Sci Instrum. 2007;78(7):073905. doi: 10.1063/1.2757129
  • Piermarini GJ, Block S, Barnett J. Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys. 1973;44(12):5377–5382. doi: 10.1063/1.1662159
  • Klotz S, Chervin JC, Munsch P, et al. Hydrostatic limits of 11 pressure transmitting media. J Appl Phys. 2009;42(7):075413.
  • LASERGLOW TECHNOLOGIES, 873 St. Clair Ave West, Toronto, ON, Canada, M6C1C4.
  • OCEAN OPTICS, 8060 Bryan Dairy Rd, Largo FL 33777, USA.
  • Frontzek M, Andrews K, Jones A, et al. The wide angle neutron diffractometer squared (WAND2) - possibilities and future. Physica B: Condens Matter. 2017;in press.
  • Sears VF. Neutron scattering lengths and cross sections. Neutron News. 1992;3(3):26–37. doi: 10.1080/10448639208218770
  • Piermarini GJ, Block S, Barnett JD, et al. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J Geophys Res Solid Earth. 1975;46(6):2774–2780.
  • Leger JM, Chateau C, Lacam A. SrB4O7:Sm2+ pressure optical sensor: investigations in the megabar range. J Appl Phys. 1990;68(5):2351–2354. doi: 10.1063/1.346543
  • Boehler R. New diamond cell for single-crystal x-ray diffraction. Rev Sci Instrum. 2006;77(11):115103. doi: 10.1063/1.2372734
  • Klotz S, Takemura K, Strässle T, et al. Freezing of glycerol–water mixtures under pressure. J Phys: Condens Matter. 2012;24:325103.
  • Datchi F, Dewaele A, Loubeyre P, et al. Optical pressure sensors for high-pressure–high-temperature studies in a diamond anvil cell. High Press Res. 2007;27(4):447–463. doi: 10.1080/08957950701659593
  • McCumber DE, Sturge MD. Linewidth and temperature shift of the R lines in Ruby. J Appl Phys. 1963;34(6):1682–1684. doi: 10.1063/1.1702657
  • Available from https://neutrons.ornl.gov/users.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.