Publication Cover
High Pressure Research
An International Journal
Volume 38, 2018 - Issue 4
225
Views
18
CrossRef citations to date
0
Altmetric
Articles

Melting and subsolidus phase relations in the system K2CO3–MgCO3 at 3 GPa

, , &
Pages 422-439 | Received 10 Jul 2018, Accepted 25 Oct 2018, Published online: 07 Nov 2018

References

  • Shatskiy A, Litasov KD, Sharygin IS, et al. Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa. Gondwana Res. 2017;45:208–227. doi: 10.1016/j.gr.2017.02.009
  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, et al. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology. 2004;32:845–848. doi: 10.1130/G20821.1
  • Golovin A, Sharygin I, Kamenetsky V, et al. Alkali-carbonate melts from the base of cratonic lithospheric mantle: links to kimberlites. Chem. Geol. 2018;483:261–274. doi: 10.1016/j.chemgeo.2018.02.016
  • Shu Q, Brey GP. Ancient mantle metasomatism recorded in subcalcic garnet xenocrysts: temporal links between mantle metasomatism, diamond growth and crustal tectonomagmatism. Earth Planet. Sci. Lett. 2015;418:27–39. doi: 10.1016/j.epsl.2015.02.038
  • Green DH, Wallace ME. Mantle metasomatism by ephemeral carbonatite melts. Nature. 1988;336:459–462. doi: 10.1038/336459a0
  • Shatskii AF, Borzdov YM, Sokol AG, et al. Phase formation and diamond crystallization in carbon-bearing ultrapotassic carbonate-silicate systems. Russ Geol Geophys. 2002;43:940–950.
  • Pal'yanov YN, Sokol AG, Borzdov YM, et al. Diamond formation from mantle carbonate fluids. Nature. 1999;400:417–418. doi: 10.1038/22678
  • Schrauder M, Navon O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta. 1994;58:761–771. doi: 10.1016/0016-7037(94)90504-5
  • Brey GP, Bulatov VK, Girnis AV. Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 2011;281:333–342. doi: 10.1016/j.chemgeo.2010.12.019
  • Grassi D, Schmidt MW. The melting of carbonated pelites from 70 to 700 km depth. J Petrol. 2011;52:765–789. doi: 10.1093/petrology/egr002
  • Dasgupta R, Hirschmann MM, Withers AC. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 2004;227:73–85. doi: 10.1016/j.epsl.2004.08.004
  • Litasov KD, Shatskiy A, Ohtani E, et al. The solidus of alkaline carbonatite in the deep mantle. Geology. 2013;41:79–82. doi: 10.1130/G33488.1
  • Litasov KD, Shatskiy A. Carbon-bearing magmas in the earth’s deep interior. In: Kono Y, Sanloup C, editors. Magmas under pressure advances in high-pressure experiments on structure and properties of melts. Amsterdam: Elsevier; 2018. p. 43–82.
  • Zedgenizov DA, Ragozin AL, Shatsky VS, et al. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the internationalnaya kimberlite pipe (yakutia). Lithos. 2009;112:638–647. doi: 10.1016/j.lithos.2009.05.008
  • Klein-BenDavid O, Logvinova AM, Schrauder M, et al. High-Mg carbonatitic microinclusions in some yakutian diamonds – a new type of diamond-forming fluid. Lithos. 2009;112:648–659. doi: 10.1016/j.lithos.2009.03.015
  • Jablon BM, Navon O. Most diamonds were created equal. Earth Planet. Sci. Lett. 2016;443:41–47. doi: 10.1016/j.epsl.2016.03.013
  • Weiss Y, Kessel R, Griffin WL, et al. A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos. 2009;112:660–674. doi: 10.1016/j.lithos.2009.05.038
  • Zedgenizov DA, Rege S, Griffin WL, et al. Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya kimberlite: LAM-ICPMS analysis. Chem. Geol. 2007;240:151–162. doi: 10.1016/j.chemgeo.2007.02.003
  • Navon O, Hutcheon I, Rossman G, et al. Mantle-derived fluids in diamond micro-inclusions. Nature. 1988;335:784. doi: 10.1038/335784a0
  • Litasov KD. Physicochemical conditions for melting in the earth’s mantle containing a C–O–H fluid (from experimental data). Russ Geol Geophys. 2011;52:475–492. doi: 10.1016/j.rgg.2011.04.001
  • Sweeney RJ. Carbonatite melt compositions in the earth's mantle. Earth Planet. Sci. Lett. 1994;128:259–270. doi: 10.1016/0012-821X(94)90149-X
  • Yaxley GM, Crawford AJ, Green DH. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet. Sci. Lett. 1991;107:305–317. doi: 10.1016/0012-821X(91)90078-V
  • Yaxley GM, Green DH, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere. J Petrol. 1998;39:1917–1930. doi: 10.1093/petroj/39.11-12.1917
  • Dautria J, Dupuy C, Takherist D, et al. Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin. Contrib Mineral Petrol. 1992;111:37–52. doi: 10.1007/BF00296576
  • Thibault Y, Edgar AD, Lloyd FE. Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithosphere. Am Mineral. 1992;77:784–794.
  • Rudnick RL, McDonough WF, Chappell BW. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet. Sci. Lett. 1993;114:463–475. doi: 10.1016/0012-821X(93)90076-L
  • Pinto LGR, de Pádua MB, Ussami N, et al. Magnetotelluric deep soundings, gravity and geoid in the south São Francisco craton: geophysical indicators of cratonic lithosphere rejuvenation and crustal underplating. Earth Planet. Sci. Lett. 2010;297:423–434. doi: 10.1016/j.epsl.2010.06.044
  • Yoshino T, Gruber B, Reinier C. Effects of pressure and water on electrical conductivity of carbonate melt with implications for conductivity anomaly in continental mantle lithosphere. Phys Earth Planet Inter. 2018;281:8–16. doi: 10.1016/j.pepi.2018.05.003
  • Jones AG, Lezaeta P, Ferguson IJ, et al. The electrical structure of the Slave craton. Lithos. 2003;71:505–527. doi: 10.1016/j.lithos.2003.08.001
  • Giuliani A, Kamenetsky VS, Phillips D, et al. Nature of alkali-carbonate fluids in the sub-continental lithospheric mantle. Geology. 2012;40:967–970. doi: 10.1130/G33221.1
  • Shatskiy A, Litasov KD, Ohtani E, et al. Phase relations in the K2CO3–FeCO3 and MgCO3–FeCO3 systems at 6 GPa and 900–1700°C. Eur J Mineral. 2015;27:487–499. doi: 10.1127/ejm/2015/0027-2452
  • Shatskiy A, Sharygin IS, Gavryushkin PN, et al. The system K2CO3–MgCO3 at 6 GPa and 900–1450°C. Am Mineral. 2013;98:1593–1603. doi: 10.2138/am.2013.4407
  • Shatskiy A, Podborodnikov IV, Arefiev AV, et al. Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: implications for partial melting of carbonated lherzolite. Am Mineral. 2017;102:1934–1946. doi: 10.2138/am-2017-6048
  • Eitel W, Skaliks W. Über einige doppelcarbonate der alkalien und erdalkalien. Z Anorg Allg Chem. 1929;183:263–286. doi: 10.1002/zaac.19291830119
  • Gudfinnsson GH, Presnall DC. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol. 2005;46:1645–1659. doi: 10.1093/petrology/egi029
  • Ragone SE, Datta RK, Roy DM, et al. The system potassium carbonate-magnesium carbonate. J Phys Chem. 1966;70:3360–3361. doi: 10.1021/j100882a515
  • Shatskiy A, Litasov KD, Terasaki H, et al. Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Press Res. 2010;30:443–450. doi: 10.1080/08957959.2010.515079
  • Shatskiy A, Katsura T, Litasov KD, et al. High pressure generation using scaled-up Kawai-cell. Phys Earth Planet Inter. 2011;189:92–108. doi: 10.1016/j.pepi.2011.08.001
  • Suzuki A, Ohtani E, Funakoshi K, et al. Viscosity of albite melt at high pressure and high temperature. Phys Chem Miner. 2002;29:159–165. doi: 10.1007/s00269-001-0216-4
  • Shatskiy A, Podborodnikov IV, Arefiev AV, et al. Revision of the CaCO3–MgCO3 phase diagram at 3 and 6GPa. Am Mineral. 2018;103:441–452. doi: 10.2138/am-2018-6277
  • Hernlund J, Leinenweber K, Locke D, et al. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Mineral. 2006;91:295–305. doi: 10.2138/am.2006.1938
  • Brey GP, Kohler T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol. 1990;31:1353–1378. doi: 10.1093/petrology/31.6.1353
  • Lavrent’ev YG, Karmanov N, Usova L. Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys. 2015;56:1154–1161. doi: 10.1016/j.rgg.2015.07.006
  • Hesse K-F, Simons B. Crystalstructure of synthetic K2Mg(CO3)2. Z Kristallogr. 1982;161:289–292. doi: 10.1524/zkri.1982.161.3-4.289
  • Golubkova A, Merlini M, Schmidt MW. Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join. Am Mineral. 2015;100:2458–2467. doi: 10.2138/am-2015-5219
  • Arefiev AV, Shatskiy A, Podborodnikov IV, et al. The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at ≤0.1 and 6 GPa. Phys Chem Miner. 2019, doi:10.1007/s00269-018-1000-z.
  • Podborodnikov IV, Shatskiy A, Arefiev AV, et al. The system Na2CO3–MgCO3 at 3 GPa. High Press Res. 2018;38:281–292. doi: 10.1080/08957959.2018.1488972
  • Shatskiy A, Gavryushkin PN, Sharygin IS, et al. Melting and subsolidus phase relations in the system Na2CO3–MgCO3+-H2O at 6 GPa and the stability of Na2Mg(CO3)2 in the upper mantle. Am Mineral. 2013;98:2172–2182. doi: 10.2138/am.2013.4418
  • Shatskiy A, Rashchenko SV, Ohtani E, et al. The system Na2CO3–FeCO3 at 6 GPa and its relation to the system Na2CO3–FeCO3–MgCO3. Am Mineral. 2015;100:130–137. doi: 10.2138/am-2015-4777
  • White WB. The carbonate minerals. In: Farmer VC, editor. The infrared spectra of the minerals, mineralogical society monograph. London: Mineralogical Society; 1974. p. 227–284.
  • Dobson DP, Jones AP, Rabe R, et al. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 1996;143:207–215. doi: 10.1016/0012-821X(96)00139-2
  • Cooper AF, Gittins J, Tuttle OF. The system Na2CO3–K2CO3–CaCO3 at 1 kilobar and its significance in carbonatite petrogenesis. Am J Sci. 1975;275:534–560. doi: 10.2475/ajs.275.5.534
  • Shatskiy A, Borzdov YM, Litasov KD, et al. Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450°C. Am Mineral. 2015;100:223–232. doi: 10.2138/am-2015-5001
  • Gavryushkin P, Rashenko S, Shatskiy A, et al. Compressibility and phase transitions of potassium carbonate at pressures below 30 kbar. J Struct Chem. 2016;57:1485–1488. doi: 10.1134/S0022476616070258
  • Gavryushkin PN, Behtenova A, Popov ZI, et al. Toward analysis of structural changes common for alkaline carbonates and binary compounds: prediction of high-pressure structures of Li2CO3, Na2CO3, and K2CO3. Cryst Growth Des. 2016;16:5612–5617. doi: 10.1021/acs.cgd.5b01793
  • Gavryushkin PN, Likhacheva AY, Popov ZI, et al. Potassium carbonate under pressure: common structural trend for alkaline carbonates and binary compounds. arXiv preprint arXiv:150806456; 2015.
  • Cancarevic Z, Schon JC, Jansen M. Alkali metal carbonates at high pressure. Z Anorg Allg Chem. 2006;632:1437–1448. doi: 10.1002/zaac.200600068
  • Li Z. Melting and structural transformations of carbonates and hydrous phases in Earth's mantle: Dissertation, Department of Geology, University of Michigan, USA; 2015.
  • Liu Q, Tenner TJ, Lange RA. Do carbonate liquids become denser than silicate liquids at pressure? constraints from the fusion curve of K2CO3 to 3.2 GPa. Contrib Mineral Petrol. 2007;153:55–66. doi: 10.1007/s00410-006-0134-z
  • Wang M, Liu Q, Inoue T, et al. The K2CO3 fusion curve revisited: New experiments at pressures up to 12 GPa. J Mineral Petrol Sci. 2016;111:241–251. doi: 10.2465/jmps.150417
  • Hasterok D, Chapman D. Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett. 2011;307:59–70. doi: 10.1016/j.epsl.2011.04.034
  • Dalton JA, Presnall DC. Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol. 1998;131:123–135. doi: 10.1007/s004100050383
  • Dasgupta R, Hirschmann MM. Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral. 2007;92:370–379. doi: 10.2138/am.2007.2201
  • Shatskiy A, Litasov KD, Palyanov YN, et al. Phase relations on the K2CO3–CaCO3–MgCO3 join at 6 GPa and 900–1400°C: implication for incipient melting in carbonated mantle domains. Am Mineral. 2016;101:437–447. doi: 10.2138/am-2016-5332
  • Brey G, Brice WR, Ellis DJ, et al. Pyroxene-carbonate reactions in the upper mantle. Earth Planet. Sci. Lett. 1983;62:63–74. doi: 10.1016/0012-821X(83)90071-7
  • Podborodnikov IV, Shatskiy A, Arefiev AV, et al. The system Na2CO3–CaCO3 at 3 GPa. Phys Chem Miner. 2018;45:773–787. doi: 10.1007/s00269-018-0961-2
  • Klement W, Cohen LH. Solid-solid and solid-liquid transitions in K2CO3, Na2CO3 and Li2CO3: investigations to ≥5 kbar by differential thermal analysis; thermodynamics and structural correlations. Berich Bunsengr Physikal Chem. 1975;79:327–334. doi: 10.1002/bbpc.19750790404
  • Syracuse EM, van Keken PE, Abers GA. The global range of subduction zone thermal models. Phys Earth Planet Inter. 2010;183:73–90. doi: 10.1016/j.pepi.2010.02.004
  • Wyllie PJ, Huang WL. Inflence of mantle CO2 ingeneration of carbonatites and kimberlites. Nature. 1975;257:297–299. doi: 10.1038/257297a0
  • Gudfinnsson GH, Presnall DC. Melting relations of model lherzolite in the system CaO–MgO–Al2O3–SiO2 at 2.4–3.4 GPa and the generation of komatiites. J Geophys Res Solid Earth. 1996;101:27701–9. doi: 10.1029/96JB02462

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.