152
Views
3
CrossRef citations to date
0
Altmetric
Articles

High pressure studies on the misfolding and aggregation of p53 in cancer and of α-synuclein in Parkinson’s disease

, , & ORCID Icon
Pages 193-201 | Received 22 Dec 2018, Accepted 17 Jan 2019, Published online: 11 Feb 2019

References

  • Chen W, Shao Y, Chen F. Evolution of complete proteomes: guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture. BMC Evol Biol. 2013 Oct 3;13:219. doi:10.1186/1471-2148-13-219. PubMed PMID: 24088322; PubMed Central PMCID: PMCPMC3850711.
  • de Oliveira GA, Rocha CB, Marques Mde A, et al. Insights into the intramolecular coupling between the N- and C-domains of troponin C derived from high-pressure, fluorescence, nuclear magnetic resonance, and small-angle X-ray scattering studies. Biochemistry. 2013 Jan 08;52(1):28–40. doi:10.1021/bi301139d. PubMed PMID: 23215438.
  • Silva JL, Oliveira AC, Vieira TC, et al. High-pressure chemical biology and biotechnology. Chem Rev. 2014 Jul 23;114(14):7239–7267. doi:10.1021/cr400204z. PubMed PMID: 24884274.
  • Caro JA, Wand AJ. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods. 2018 Sep 15;148:67–80. doi:10.1016/j.ymeth.2018.06.012. PubMed PMID: 29964175; PubMed Central PMCID: PMCPMC6133745.
  • Akasaka K, Kitahara R, Kamatari YO. Exploring the folding energy landscape with pressure. Arch Biochem Biophys. 2013 Mar;531(1–2):110–115. doi:10.1016/j.abb.2012.11.016. PubMed PMID: 23246376.
  • Dzwolak W, Kato M, Taniguchi Y. Fourier transform infrared spectroscopy in high-pressure studies on proteins. Biochim Biophys Acta. 2002 Mar 25;1595(1–2):131–144. PubMed PMID: 11983392. doi: 10.1016/S0167-4838(01)00340-5
  • Winter R. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta. 2002 Mar 25;1595(1–2):160–184. PubMed PMID: 11983394. doi: 10.1016/S0167-4838(01)00342-9
  • Schroer MA, Paulus M, Jeworrek C, et al. High-pressure SAXS study of folded and unfolded ensembles of proteins. Biophys J. 2010 Nov 17;99(10):3430–3437. doi:10.1016/j.bpj.2010.09.046. PubMed PMID: 21081092; PubMed Central PMCID: PMCPMC2980736.
  • Royer CA. Probing protein folding and conformational transitions with fluorescence. Chem Rev. 2006 May;106(5):1769–1784. doi:10.1021/cr0404390. PubMed PMID: 16683754.
  • Lerch MT, Horwitz J, McCoy J, et al. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci USA. 2013 Dec 3;110(49):E4714–E4722. doi:10.1073/pnas.1320124110. PubMed PMID: 24248390; PubMed Central PMCID: PMCPMC3856799.
  • Roche J, Caro JA, Norberto DR, et al. Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA. 2012 May 1;109(18):6945–6950. doi:10.1073/pnas.1200915109. PubMed PMID: 22496593; PubMed Central PMCID: PMCPMC3344970.
  • de Oliveira GA, Silva JL. A hypothesis to reconcile the physical and chemical unfolding of proteins. Proc Natl Acad Sci USA. 2015 May 26;112(21):E2775–E2784. doi:10.1073/pnas.1500352112. PubMed PMID: 25964355; PubMed Central PMCID: PMCPMC4450381.
  • Hamann SD. The role of electrostriction in high pressure chemistry. Rev Phys Chem Jpn. 1980;50:147–168.
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366. doi:10.1146/annurev.biochem.75.101304.123901. PubMed PMID: 16756495.
  • Silva JL, Cino EA, Soares IN, et al. Targeting the prion-like aggregation of Mutant p53 to Combat cancer. Acc Chem Res. 2018 Jan 16;51(1):181–190. doi:10.1021/acs.accounts.7b00473. PubMed PMID: 29260852.
  • Niraula TN, Konno T, Li H, et al. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA. 2004 Mar 23;101(12):4089–4093. doi:10.1073/pnas.0305798101. PubMed PMID: 15016916; PubMed Central PMCID: PMCPMC394761.
  • Ferrão-Gonzales ADS SO, Silva JL, Foguel D. The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state. Proc Natl Acad Sci USA. 2000;97(12):6445–6450. doi: 10.1073/pnas.97.12.6445
  • Torrent J, Alvarez-Martinez MT, Harricane MC, et al. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. Biochemistry. 2004 Jun 8;43(22):7162–7170. doi:10.1021/bi049939d. PubMed PMID: 15170353.
  • Kim YS, Randolph TW, Seefeldt MB, et al. High-pressure studies on protein aggregates and amyloid fibrils. Methods Enzymol. 2006;413:237–253. doi:10.1016/S0076-6879(06)13013-X. PubMed PMID: 17046400.
  • Pedrote MM, de Oliveira GAP, Felix AL, et al. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer. J Biol Chem. 2018 Jul 20;293(29):11374–11387. doi:10.1074/jbc.RA118.003285. PubMed PMID: 29853637; PubMed Central PMCID: PMCPMC6065177.
  • de Oliveira GA, Marques MA, Cruzeiro-Silva C, et al. Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Sci Rep. 2016 Nov 30;6:37990. doi:10.1038/srep37990. PubMed PMID: 27901101; PubMed Central PMCID: PMCPMC5128797.
  • Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level. J Mol Med (Berl). 2010 Jul;88(7):645–652. doi:10.1007/s00109-010-0609-2. PubMed PMID: 20306257.
  • Wolf D, Harris N, Rotter V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell. 1984 Aug;38(1):119–126. PubMed PMID: 6088057. doi: 10.1016/0092-8674(84)90532-4
  • Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell. 1991 May 31;65(5):765–774. PubMed PMID: 2040013. doi: 10.1016/0092-8674(91)90384-B
  • Halevy O, Michalovitz D, Oren M. Different tumor-derived p53 mutants exhibit distinct biological activities. Science. 1990 Oct 5;250(4977):113–116. PubMed PMID: 2218501. doi: 10.1126/science.2218501
  • Ishimaru DA LR, Teixeira LSP, Quesado PA, et al. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry. 2003;42:9022–9027. doi: 10.1021/bi034218k
  • Levy CB, Stumbo AC, Ano Bom AP, et al. Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors. Int J Biochem Cell Biol. 2011 Jan;43(1):60–64. doi:10.1016/j.biocel.2010.10.017. PubMed PMID: 21056685.
  • Ano Bom AP, Rangel LP, Costa DC, et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem. 2012 Aug 10;287(33):28152–28162. doi:10.1074/jbc.M112.340638. PubMed PMID: 22715097; PubMed Central PMCID: PMCPMC3431633.
  • Yang-Hartwich Y, Soteras MG, Lin ZP, et al. P53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene. 2015 Jul;34(27):3605–3616. doi:10.1038/onc.2014.296. PubMed PMID: 25263447.
  • Ghosh S, Salot S, Sengupta S, et al. P53 amyloid formation leading to its loss of function: implications in cancer pathogenesis. Cell Death Differ. 2017 Oct;24(10):1784–1798. doi:10.1038/cdd.2017.105. PubMed PMID: 28644435; PubMed Central PMCID: PMCPMC5596421.
  • Cino EA, Soares IN, Pedrote MM, et al. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds. Sci Rep. 2016 Sep 07;6:32535. doi:10.1038/srep32535. PubMed PMID: 27600721; PubMed Central PMCID: PMCPMC5013286.
  • James NG, Ross JA, Stefl M, et al. Applications of phasor plots to in vitro protein studies. Anal Biochem. 2011 Mar 01;410(1):70–76. doi:10.1016/j.ab.2010.11.011. PubMed PMID: 21078289; PubMed Central PMCID: PMCPMC3021620.
  • Nemani VM, Lu W, Berge V, et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 2010 Jan 14;65(1):66–79. doi:10.1016/j.neuron.2009.12.023. PubMed PMID: 20152114; PubMed Central PMCID: PMCPMC3119527.
  • Burré JS M, Tsetsenis T, Buchman V, et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–1667. doi: 10.1126/science.1195227
  • Guardia-Laguarta C, Area-Gomez E, Rub C, et al. α-synuclein is localized to mitochondria-associated ER membranes. J Neurosci. 2014 Jan 1;34(1):249–259. doi:10.1523/JNEUROSCI.2507-13.2014. PubMed PMID: 24381286; PubMed Central PMCID: PMCPMC3866487.
  • Spillantini MG, Schmidt ML, Lee VM-Y, et al. α-synuclein in lewy bodies. Nature. 1997;388:839–840. doi: 10.1038/42166
  • Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science. 1997 Jun 27;276(5321):2045–2047. PubMed PMID: 9197268. doi: 10.1126/science.276.5321.2045
  • Fauvet BM MK, Fares M-B, Desobry C, et al. α-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012;287(19):15345–15364. doi: 10.1074/jbc.M111.318949
  • Theillet FX, Binolfi A, Bekei B, et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature. 2016 Feb 04;530(7588):45–50. doi:10.1038/nature16531. PubMed PMID: 26808899.
  • Bartels T, Choi JG, Selkoe DJ. α-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011 Aug 14;477(7362):107–110. doi:10.1038/nature10324. PubMed PMID: 21841800; PubMed Central PMCID: PMCPMC3166366.
  • Wang W, Perovic I, Chittuluru J, et al. A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA. 2011 Oct 25;108(43):17797–17802. doi:10.1073/pnas.1113260108. PubMed PMID: 22006323; PubMed Central PMCID: PMCPMC3203798.
  • Dehay B, Bourdenx M, Gorry P, et al. Targeting α-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations. Lancet Neurol. 2015 Aug;14(8):855–866. doi:10.1016/S1474-4422(15)00006-X. PubMed PMID: 26050140; PubMed Central PMCID: PMCPMC5217462.
  • Debora Foguel MCS, Ferrão-Gonzales AD, Porto TCR, et al. Dissociation of amyloid fibrils of α-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA. 2003;100(17):9831–9836. doi: 10.1073/pnas.1734009100
  • Follmer C, Romao L, Einsiedler CM, et al. Dopamine affects the stability, hydration, and packing of protofibrils and fibrils of the wild type and variants of alpha-synuclein. Biochemistry. 2007 Jan 16;46(2):472–482. doi:10.1021/bi061871+. PubMed PMID: 17209557. doi: 10.1021/bi061871+
  • Golebiewska U, Scarlata S. High pressure promotes alpha-synuclein aggregation in cultured neuronal cells. FEBS Lett. 2015 Oct 24;589(21):3309–3312. doi:10.1016/j.febslet.2015.09.019. PubMed PMID: 26434717; PubMed Central PMCID: PMCPMC4661088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.