467
Views
11
CrossRef citations to date
0
Altmetric
Articles

Poly 3-hydroxybutyrate-co-3-hydroxyhexanoate films can be degraded by the deep-sea microbes at high pressure and low temperature conditions

, , , , &
Pages 248-257 | Received 26 Dec 2018, Accepted 01 Feb 2019, Published online: 01 Mar 2019

References

  • Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–771. doi: 10.1126/science.1260352
  • Gall SC, Thompson RC. The impact of debris on marine life. Mar Pollut Bull.. 2015;92:170–179. doi: 10.1016/j.marpolbul.2014.12.041
  • Mato Y, Isobe T, Takada H, et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001;35:318–324. doi: 10.1021/es0010498
  • Fujikura K, Okutani S, Maruyama T, editors. Deep-sea life – biological observations using research submersibles. Hadano (Japan): Tokai University Press; 2008.
  • Michels J, Stippkugel A, Lenz M, et al. Rpid aggregation of biofilm-covered microplastics with marine biogenic particles. Proc R Soc B. 2018;285: 20181203. doi: 10.1098/rspb.2018.1203
  • Peng X, Chen M, Chen S, et al. Microplastics contaminate the deepest part of the world’s ocean. Geochem Persp Let. 2018;9:1–5. doi: 10.7185/geochemlet.1829
  • Tokiwa Y, Calabia BP. Biodegradability and Biodegradation of Polyesters. J Poly Environ. 2007;15:259–267. doi: 10.1007/s10924-007-0066-3
  • Jiang L, Wolcott MP, Zhang J. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules. 2006;7:199–207. doi: 10.1021/bm050581q
  • Anderson AJ, Haywood GW, Dawes EA. Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol. 1990;12:102–105. doi: 10.1016/0141-8130(90)90060-N
  • Guo-qiang C, Qiong W, Kai Z, et al. Functional polyhydroxyalkanoates synthesized by microorganisms. Chinese J Poly Sci. 2000;18:389–396.
  • Lu J, Takahashi A, Ueda S. 3-Hydroxybutyrate oligomer hydrolase and 3-hydroxybutyrate dehydrogenase participate in intracellular polyhydroxybutyrate and polyhydroxyvalerate degradation in Paracoccus denitrificans. Appl Environ Microbiol. 2014;80:986-993. doi: 10.1128/AEM.03396-13
  • Jendroseek J. Microbial degradation of polyesters: a review on extracellular poly(hydroxyalkanoic acid) depolymerases. Polym Degrad Stab. 1998;59:317–325. doi: 10.1016/S0141-3910(97)00190-0
  • Steinbuchel A, Fuchtenbusch B. Bacterial and other biological systems for polyester production. Trend Biotechnol. 1998;16:419–427. doi: 10.1016/S0167-7799(98)01194-9
  • Sato S, Maruyama H, Fujiki T, et al. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J Biosci Bioeng. 2015;120:246–251. doi: 10.1016/j.jbiosc.2015.01.016
  • Kasuya K, Takano T, Tezuka Y, et al. Cloning, expression and characterization of a poly(3-hydroxybutyrate) depolymerase from Marinobacter sp. NK-1. Int J Biol Macromol. 2003;33:221–226. doi: 10.1016/j.ijbiomac.2003.08.006
  • Morohoshi T, Ogawa K, Okura T, et al. Molecular characterization of the bacterial community in Biofilms for degradation of poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) films in seawater. Microbes Environ. 2018;33:19–25. doi: 10.1264/jsme2.ME17052
  • Morohoshi T, Oi T, Aiso H, et al. Biofilm formation and degradation of commercially available biodegradable plastics films by bacterial consortiums in freshwater environments. Microbes Environ. 2018;33:332–335. doi: 10.1264/jsme2.ME18033
  • Sekiguchi T, Sato T, Enoki M, et al. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTECR. 2010;11:33–41. doi: 10.5918/jamstecr.11.33
  • Sekiguchi T, Sato T, Enoki M, et al. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. Jpn J Soc Extremophiles. 2010;9:25–30. doi: 10.3118/jjse.9.25
  • Sekiguchi T, Ebisui A, Nomura K, et al. Biodegradation of several fibers soaked into deep sea and isolation of the biodegradable plastic degrading bacteria from deep seawater. Nippon Suisan Gakkaishi. 2009;76:1011–1018. doi: 10.2331/suisan.75.1011
  • Saito H, Miura K. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 1963;72:612–629. doi: 10.1016/0926-6550(63)90386-4
  • Kato C, Li L, Tamaoka J, et al. Molecular analyses of the sediment of the 11,000 m deep Mariana Trench. Extremophiles. 1997;1:117–123. doi: 10.1007/s007920050024
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Conserv. 1995;4:1–9. doi: 10.1007/BF00115311
  • Kato C. 5.6 Cultivation methods for piezophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K, editors. Extremophiles Handbook. Tokyo: Springer-Verlag; 2011. p. 719–726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.