102
Views
6
CrossRef citations to date
0
Altmetric
Articles

Adaptations for pressure and temperature effects on loop motion in Escherichia coli and Moritella profunda dihydrofolate reductase

, , &
Pages 225-237 | Received 20 Dec 2018, Accepted 13 Feb 2019, Published online: 05 Mar 2019

References

  • Winter R. High pressure effects in molecular bioscience. In: Manaa MR, editor. Chemistry at extreme conditions. Amsterdam: Elsevier B. V.; 2005. p. 29–82.
  • Meersman F, Daniel I, Bartlett DH, et al. High-pressure biochemistry and biophysics. In: Hazen RM, Jones AP, Baross JA, editor. Carbon in Earth. Reviews in Mineralogy & Geochemistry. 75. Washington, DC: Mineralogical Society of America; 2013. p. 607–648.
  • Somero GN. Proteins and temperature. Ann Rev Physiol. 1995;57:43–68. doi: 10.1146/annurev.ph.57.030195.000355
  • Jaenicke R, Závodszky P. Proteins under extreme physical conditions. FEBS Lett. 1990;268:344–349. doi: 10.1016/0014-5793(90)81283-T
  • D'Amico S, Marx J-C, Gerday C, et al. Activity-stability relationships in extremophilic enzymes. J Biol Chem. 2003;278:7891–7896. doi: 10.1074/jbc.M212508200
  • Feller G, Gerday C. Psychrophilic enzymes: Hot topics in cold adaptation. Nature Rev Microbiol. 2003;1:200–208. doi: 10.1038/nrmicro773
  • Boonyaratanakornkit BB, Park CB, Clark DS. Review: pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta. 2002;1595:235–249. doi: 10.1016/S0167-4838(01)00347-8
  • Roche J, Caro JA, Noberto DR, et al. Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA. 2012;109:6945–6950. doi: 10.1073/pnas.1200915109
  • Liu CT, Hanoian P, French JB, et al. Functional significance of evolving protein sequnce in dihydrofolate reductase from bacteria to humans. Proc Natl Acad Sci USA. 2013;110:10159–10164. Epub 2014/12/03. doi: 10.1073/pnas.1307130110
  • Hammes GG, Benkovic SJ, Hammes-Schiffer S. Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. Biochem. 2011;50:10422–10430. doi: 10.1021/bi201486f
  • Hanoian P, Liu CT, Hammes-Schiffer S, et al. Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc Chem Res. 2015;48:482–489. doi: 10.1021/ar500390e
  • Sawaya MR, Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochem. 1997;36:586–603. doi: 10.1021/bi962337c
  • Osborne MJ, Schnell J, Benkovic SJ, et al. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Biochem. 2001;40:9846–9859. doi: 10.1021/bi010621k
  • Kitahara R, Sareth S, Yamada H, et al. High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase. Biochem. 2000;39:12789–12795. doi: 10.1021/bi0009993
  • Rod TH, Radkiewicz JL, Brooks CL, 3rd. Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci USA. 2003;100:6980–6985. Epub 2003/05/21. doi: 10.1073/pnas.1230801100
  • Xu Y, Nogi Y, Kato C, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Sys Evol Microbiol. 2003;53:533–538. doi: 10.1099/ijs.0.02228-0
  • Ohmae E, Murakami C, Tate S-i, et al. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta. 2012;1824:511–519. doi: 10.1016/j.bbapap.2012.01.001
  • Ohmae E, Miyashita Y, Tate S-i, et al. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: Comparison of wild-type protein and the active-site mutant D27E. Biochim Biophys Acta. 2013;1834:2782–2794. doi: 10.1016/j.bbapap.2013.09.024
  • Evans RM, Behiry EM, Tey L-H, et al. Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda. ChemBioChem. 2010;11:2010–2017. doi: 10.1002/cbic.201000341
  • Hay S, Evans RM, Levy C, et al. Are the catalytic properties of enzymes from piezophilic organisms pressure adapted? ChemBioChem. 2009;10:2348–2353. doi: 10.1002/cbic.200900367
  • Huang Q, Rodgers JM, Hemley RJ, et al. Extreme biophysics: enzymes under pressure. J Comput Chem. 2017;38:1174–1182. doi: 10.1002/jcc.24737
  • Rodgers JM, Hemley RJ, Ichiye T. Quasiharmonic analysis of protein energy landscapes from pressure-temperature molecular dynamics simulations. J Chem Phys. 2017;147:125103. doi: 10.1063/1.5003823
  • Huang Q, Rodgers JM, Hemley RJ, et al. Quasiharmonic analysis of the energy landscapes of dihydrofolate reductase from piezophiles and mesophiles. J Phys Chem B. 2018;122:5527–5533. doi: 10.1021/acs.jpcb.7b11838
  • Berman HM, Westbrook J, Feng Z, et al. The protein data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235
  • Hata K, Tanaka T, Murakami C, et al. Moritella profunda Dihydrofolate reductase complex with NADP+ and Folate. PDBunpublished.
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539. doi: 10.1038/msb.2011.75
  • Brooks BR, Brooks CL, III, MacKerell AD, Jr., et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287
  • Miller BT, Singh RP, Klauda JB, et al. CHARMMing: A new, flexible web portal for CHARMM. J Chem Inf Model. 2008;48:1920–1929. doi: 10.1021/ci800133b
  • MacKerell AD, Jr., Bashford D, Bellot M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. doi: 10.1021/jp973084f
  • Best RB, Zhu X, Shim J, et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x
  • Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys. 2004;120:9665–9678. doi: 10.1063/1.1683075
  • Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695
  • Nose S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519. doi: 10.1063/1.447334
  • York DM, Pedersen LG, Darden TA. The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and trucated list methods. J Chem Phys. 1993;99:8345–8348. doi: 10.1063/1.465608
  • Murakami C, Ohmae E, Tate S-i, et al. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. J Biochem-Tokyo. 2010;147:591–599. doi: 10.1093/jb/mvp206
  • Murakami C, Ohmae E, Tate S-i, et al. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles. 2011;15:165–175. doi: 10.1007/s00792-010-0345-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.