143
Views
10
CrossRef citations to date
0
Altmetric
Articles

Listeria monocytogenes cells injured by high hydrostatic pressure and their recovery in nutrient-rich or -free medium during cold storage

, , &
Pages 324-333 | Received 30 Dec 2018, Accepted 12 Feb 2019, Published online: 01 Mar 2019

References

  • Wu VCH. A review of microbial injury and recovery methods in food. Food Microbiol. 2008;25:735–744. doi: 10.1016/j.fm.2008.04.011
  • Noriega E, Velliou E, Derlinden EV, et al. Effect of cell immobilization on heat-induced sublethal injury of Escherichia coli, Salmonella typhimurium and Listeria innocua. Food Microbiol. 2013;36:355–364. doi: 10.1016/j.fm.2013.06.015
  • Perni S, Chalise PR, Shama G, et al. Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sublethal effects. Int J Food Microbiol. 2007;120:311–314. doi: 10.1016/j.ijfoodmicro.2007.10.002
  • Zhao W, Yang R, Shen X, et al. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control. 2013;32:6–12. doi: 10.1016/j.foodcont.2012.11.029
  • Gayán E, García-Gonzalo D, Alvarez I, et al. Resistance of Staphylococcus aureus to UV-C light and combined UV-heat treatments at mild temperatures. Int J Food Microbiol. 2014;172:30–39. doi: 10.1016/j.ijfoodmicro.2013.12.003
  • Zheng Q, Mikš-Krajnik M, D’Souza C, et al. Growth of healthy and sanitizer-injured Salmonella cells on mung bean sprouts in different commercial enrichment broths. Food Microbiol. 2015;52:159–168. doi: 10.1016/j.fm.2015.07.013
  • Dodd CER, Richards PJ, Aldsworth TG. Suicide through stress: a bacterial response to sub-lethal injury in the food environment. Int J Food Microbiol. 2007;120:46–50. doi: 10.1016/j.ijfoodmicro.2007.06.008
  • Koseki S, Mizuno Y, Yamamoto K. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk. Food Microbiol. 2008;25:288–293. doi: 10.1016/j.fm.2007.10.009
  • McKenzie K, Maclean M, Timoshkin IV, et al. Enhanced inactivation of Escherichia coli and Listeria monocytogenes by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol. 2014;170:91–98. doi: 10.1016/j.ijfoodmicro.2013.10.016
  • Blackburn CW, McCarthy JD. Modifications to methods for the enumeration and detection of injured Escherichia coli O157:H7 in foods. Int J Food Microbiol. 2000;55:285–290. doi: 10.1016/S0168-1605(00)00205-1
  • Chawla CS, Chen H, Donnelly CW. Mathematically modeling the repair of heat-injured Listeria monocytogenes as affected by temperature, pH, and salt concentration. Int J Food Microbiol. 1996;30:231–242. doi: 10.1016/0168-1605(96)00945-2
  • Smelt JPPM, Otten GD, Bos AP. Modelling the effect of sublethal injury on the distribution of the lag times of individual cells of Lactobacillus plantarum. Int J Food Microbiol. 2002;73:207–212. doi: 10.1016/S0168-1605(01)00651-1
  • Miller FA, Brandão TRS, Teixeira P, et al. Recovery of heat-injured Listeria innocua. Int J Food Microbiol. 2006;112:261–265. doi: 10.1016/j.ijfoodmicro.2006.04.013
  • Jasson V, Rajkovic A, Debevere J, et al. Kinetics of resuscitation and growth of L. monocytogenes as a tool to select appropriate enrichment conditions as a prior step to rapid detection methods. Food Microbiol. 2009;26:88–93. doi: 10.1016/j.fm.2008.08.007
  • Smigic N, Rajkovic A, Antal E, et al. Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere. Food Microbiol. 2009;26:629–637. doi: 10.1016/j.fm.2009.04.010
  • Bi X, Wang Y, Zhao F, et al. Sublethal injury and recovery of Escherichia coli O157:H7 by high pressure carbon dioxide. Food Control. 2015;50:705–713. doi: 10.1016/j.foodcont.2014.10.014
  • Daryaei H, Yousef AE, Balasubramaniam VM. Microbiological aspects of high-pressure processing of food: inactivation of microbial vegetative cells and spores. In: Balasubramaniam VM, Barbosa-Cánovas G, Lelieveld HLM, editors. High pressure processing of foods. New York, NY: Springer; 2016. p. 271–294.
  • Yamamoto K. Food processing by high hydrostatic pressure. Biosci Biotechnol Biochem. 2017;81:672–679. doi: 10.1080/09168451.2017.1281723
  • Koseki S, Yamamoto K. Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int J Food Microbiol. 2006;110:108–111. doi: 10.1016/j.ijfoodmicro.2006.01.039
  • Inaoka T, Kimura K, Morimatsu K, et al. Characterization of high hydrostatic pressure-injured Bacillus subtilis cells. Biosci Biotechnol Biochem. 2017;81:1235–1240. doi: 10.1080/09168451.2017.1292835
  • Kimura K, Morimatsu K, Inaoka T, et al. Injury and recovery of Escherichia coli ATCC25922 cells treated by high hydrostatic pressure at 400–600 MPa. J Biosci Bioeng. 2017;123:698–706. doi: 10.1016/j.jbiosc.2017.01.007
  • Bozoglu F, Alpas H, Kaletunc G. Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol Med Microbiol. 2004;40:243–247. doi: 10.1016/S0928-8244(04)00002-1
  • Chilton P, Isaacs NS, Manas P, et al. Biosynthetic requirements for the repair of membrane damage in pressure-treated Escherichia coli. Int J Food Microbiol. 2001;71:101–104. doi: 10.1016/S0168-1605(01)00566-9
  • Ellenberg L, Hoover DG. Injury and survival of Aeromonas hydrophila 7965 and Yersinia enterocolitica 9610 from high hydrostatic pressure. J Food Saf. 1999;19:263–276. doi: 10.1111/j.1745-4565.1999.tb00251.x
  • Bull MK, Hayman MM, Stewart CM, et al. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int J Food Microbiol. 2005;101:53–61. doi: 10.1016/j.ijfoodmicro.2004.10.045
  • Russell NJ. Bactericidal membranes: the effects of chill storage and food processing. An overview. Int J Food Microbiol. 2002;79:27–34. doi: 10.1016/S0168-1605(02)00176-9
  • Koseki S, Yamamoto K. Modelling the bacterial survival/death interface induced by high pressure processing. Int J Food Microbiol. 2007;116:136–143. doi: 10.1016/j.ijfoodmicro.2006.12.031
  • Lappin-Scott HM, Costerton JW. Starvation and penetration of bacteria in soils and rocks. Experientia. 1990;46:807–812. doi: 10.1007/BF01935529
  • Patterson MF, Quinn M, Simpson R, et al. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot. 1995;58:524–529. doi: 10.4315/0362-028X-58.5.524
  • García-Graells C, Valckx C, Michiels CW. Inactivation of Escherichia coli and Listeria innocua in milk by combined treatment with high hydrostatic pressure and the lactoperoxidase system. Appl Environ Microbiol. 2000;66:4173–4179. doi: 10.1128/AEM.66.10.4173-4179.2000
  • Buzrul S, Alpas H, Largeteau A, et al. Inactivation of Escherichia coli and Listeria innocua in kiwifruit and pineapple juices by high hydrostatic pressure. Int J Food Microbiol. 2008;124:275–278. doi: 10.1016/j.ijfoodmicro.2008.03.015
  • Pagán R, Jordan S, Benito A, et al. Enhanced acid sensitivity of pressure-damaged Escherichia coli O157 cells. Appl Environ Microbiol. 2001;67:1983–1985. doi: 10.1128/AEM.67.4.1983-1985.2001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.