433
Views
11
CrossRef citations to date
0
Altmetric
Articles

Synthesis of nano-polycrystalline diamond from glassy carbon at pressures up to 25 GPa

, , , , &
Pages 96-106 | Received 23 Sep 2019, Accepted 26 Nov 2019, Published online: 23 Dec 2019

References

  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600. doi: 10.1038/421599b
  • Irifune T, Kurio A, Sakamoto S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter. 2004;143–144:593–600. doi: 10.1016/j.pepi.2003.06.004
  • Sumiya H, Irifune T. Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion. Diamond Rel Mat. 2004;13:1771–1776. doi: 10.1016/j.diamond.2004.03.002
  • Brookes CA, Brookes EJ. Diamond I perspective: a review of mechanical properties of natural diamond. Diamond Rel Mat. 1991;1:13–17. doi: 10.1016/0925-9635(91)90006-V
  • Sumiya H, Yusa H, Inoue T, et al. Formation conditions and mechanism of nano-polycrystalline diamonds directly from graphite and non-graphitic carbons under high pressure and high temperature. High Press Res. 2006;26:63–69. doi: 10.1080/08957950600765863
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J Mater Res. 2007;22:2345–2351. doi: 10.1557/jmr.2007.0295
  • Guillou CL, Brunet F, Irifune T, et al. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon N Y. 2007;45:636–648. doi: 10.1016/j.carbon.2006.10.005
  • Dubrovinskaia N, Dubrovinsky L, Crichton W, et al. Aggregated diamond nanorods, the dentest and least compressible form of carbon. Appl Phys Lett. 2005;87:083106. doi: 10.1063/1.2034101
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510:250–253. doi: 10.1038/nature13381
  • Sumiya H, Ishida Y, Arimoto K, et al. Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT. Diamond Rel Mater. 2014;48:47–51. doi: 10.1016/j.diamond.2014.06.009
  • Brazhkin VV, Solozhenko VL. Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible. J Appl Phys. 2019;125:130901, 1–15. doi: 10.1063/1.5082739
  • Dubrovinsky L, Dubrovinskaia N, Prakapenka VB, et al. Implementation of micro-ball nanodiamond for high-pressure studies above 6 Mbar. Nat Commun. 2012;3:1163. doi:10.1038/ncomms2160.
  • Solopova NA, Dubrovinskaia N, Dubrovinsky L. Synthesis of nanocrystalline diamond from glassy carbon balls. J Cryst Growth. 2015;412:54–59. doi: 10.1016/j.jcrysgro.2014.11.041
  • Dubrovinskaia N, Dubrovinsky L, Solopova NA, et al. Terrapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci Adv. 2016;2:e1600341. doi:10.1126/sciadv.1600341.
  • Devaele A, Datch F, Loubeyre P, et al. High pressure-high temperature equations of state of neon and diamond. Phys Rev B. 2008;77:094106, doi:10.1103/PhysRevB.77.094106.
  • Chang Y, Jacobsen SD, Kimura M, et al. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods. Phys Earth Planet Inter. 2014;228:47–55. doi: 10.1016/j.pepi.2013.09.009
  • Irifune T, Kawakami K, Arimoto T, et al. Pressure-induced nano-crystallization of silicate garnets from glass. Nat Commun. 2016;7: Art. No. 13753. doi:10.1038/ncomms13753.
  • Irifune T, Isobe F, Shinmei T. A novel larg-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys Earth Planet Inter. 2014;228:255–261. doi: 10.1016/j.pepi.2013.09.007
  • Langford J, Wilson A. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystal. 1978;11:102–103. doi: 10.1107/S0021889878012844
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. J Chem Phys. 1963;38:631. doi: 10.1063/1.1733716
  • Yoshikawa M, Mori Y, Maegawa M, et al. Raman scattering from diamond particles. Appl Phys Lett. 1993;62:3114. doi:10.1063/1.109154.
  • Osswald S, Mochalin VN, Havel M, et al. Phonon confining effects in the Raman spectrum of nanodiamond. Phys Rev B. 2009;80:075419. doi: 10.1103/PhysRevB.80.075419
  • Zhang J, Li B, Utsumi W, et al. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Mineral. 1996;23:1–10. doi: 10.1007/BF00202987
  • Sakai T, Yagi T, Irifune T, et al. High pressure generation using double-stage diamond anvil technique: problems and equations of state of rhenium. High Press Res 2018;38:107–119. doi: 10.1080/08957959.2018.1448082
  • Tanigaki K, Ogi H, Sumiya H, et al. Observation of higher stiffness in nanopolycrystalline diamond than monocrystal diamond. Nat Commun 2013;4: Art. No. 2343. doi:10.1038/ncomms3343.
  • Gao GJ, Wang Y, Ogata S. Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains. Comp Mater Sci. 2013;79:56–62. doi: 10.1016/j.commatsci.2013.05.053
  • Ohfuji H, Okimoto S, Kunimoto T, et al. Influence of graphite crystallinity on the microtexture of nano-polycrystalline diamond obtained by direct conversion. Phys Chem Mineral. 2012;39:543–552. doi: 10.1007/s00269-012-0510-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.