Publication Cover
High Pressure Research
An International Journal
Volume 40, 2020 - Issue 2
230
Views
8
CrossRef citations to date
0
Altmetric
Articles

Phase relations in the Fe-P system at high pressures and temperatures from ab initio computations

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 235-244 | Received 18 Aug 2019, Accepted 06 Mar 2020, Published online: 16 Mar 2020

References

  • Litasov K, Shatskiy A. Composition of the Earth’s core: a review. Russ Geol Geophys. 2016;57(1):22–46. doi: 10.1016/j.rgg.2016.01.003
  • Britvin SN, Rudashevsky NS, Krivovichev SV, et al. Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral. 2002;87(8-9):1245–1249. doi: 10.2138/am-2002-8-924
  • Britvin SN, Shilovskikh VV, Pagano R, et al. Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Sci Rep. 2019;9(1):1047. doi: 10.1038/s41598-018-37795-x
  • Reed SJB. Perryite in the Kota-Kota and South Oman enstatite chondrites. Mineral Mag. 2018;36(282):850–854.
  • Skála R, Císařová I. Crystal structure of meteoritic schreibersites: determination of absolute structure. Phys Chem Miner. 2005;31(10):721–732. doi: 10.1007/s00269-004-0435-6
  • Okamoto H. The Fe-P (iron-phosphorus) system. Bull Alloy Phase Diagr. 1990;11(4):404–412. doi: 10.1007/BF02843320
  • Zaitsev AI, Dobrokhotova ZV, Litvina AD, et al. Thermodynamic properties and phase equilibria in the Fe–P system. J Chem Soc Faraday Trans. 1995;91(4):703–712. doi: 10.1039/FT9959100703
  • Minin DA, Shatskiy AF, Litasov KD, et al. The Fe–Fe2P phase diagram at 6 GPa. High Pressure Res. 2019;39(1):50–68. doi: 10.1080/08957959.2018.1562552
  • Stewart AJ, Schmidt MW. Sulfur and phosphorus in the Earth's core: the Fe-P-S system at 23 GPa. Geophys Res Lett. 2007;34(13):L13201. doi: 10.1029/2007GL030138
  • Gu T, Wu X, Qin S, et al. In situ high-pressure study of FeP: implications for planetary cores. Phys Earth Planet Inter. 2011;184(3):154–159. doi: 10.1016/j.pepi.2010.11.004
  • Yan H. Pressure-induced structural phase transition in iron phosphide. Comp Mater Sci. 2015;107:204–209. doi: 10.1016/j.commatsci.2015.05.031
  • Fruchart R, Roger A, Senateur JP. Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M = Cr, Mn, Fe, Co, and Ni. J Appl Phys. 1969;40(3):1250–1257. doi: 10.1063/1.1657617
  • Dera P, Lavina B, Borkowski LA, et al. High-pressure polymorphism of Fe2P and its implications for meteorites and Earth's core. Geophys Res Lett. 2008;35(10):L10301. doi: 10.1029/2008GL033867
  • Gu T, Wu X, Qin S, et al. Probing nonequivalent sites in iron phosphide Fe2P and its mechanism of phase transition. Eur Phys J B. 2013;86(7):311. doi: 10.1140/epjb/e2013-40086-3
  • Bhat SS, Gupta K, Bhattacharjee S, et al. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P. J Phys Condens Matter. 2018;30(21):215401. doi: 10.1088/1361-648X/aabe52
  • Wu X, Qin S. First-principles calculations of the structural stability of Fe2P. In: Takemura K, editor. International conference on high pressure science and technology, Joint Airapt-22 and Hpcj-50. Vol. 215. Bristol: Iop Publishing Ltd; 2010. p. 012110. Journal of Physics Conference Series.
  • Zhao ZY, Liu LL, Zhang ST, et al. Phase diagram, stability and electronic properties of an Fe-P system under high pressure: a first principles study. RSC Adv. 2017;7(26):15986–15991. doi: 10.1039/C7RA01567D
  • Scott HP, Huggins S, Frank MR, et al. Equation of state and high-pressure stability of Fe3P-schreibersite: implications for phosphorus storage in planetary cores. Geophys Res Lett. 2007;34(6):L06302. doi: 10.1029/2006GL029160
  • Scott HP, Kiefer B, Martin CD, et al. P–V equation of state for Fe2P and pressure-induced phase transition in Fe3P. High Pressure Res. 2008;28(3):375–384. doi: 10.1080/08957950802246506
  • Gu T, Fei Y, Wu X, et al. High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth Planet Sci Lett. 2014;390:296–303. doi: 10.1016/j.epsl.2014.01.019
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. doi: 10.1103/PhysRevB.54.11169
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. doi: 10.1103/PhysRevB.59.1758
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. doi: 10.1103/PhysRevLett.77.3865
  • Glass CW, Oganov AR, Hansen N. USPEX—evolutionary crystal structure prediction. Comp Phys Comm. 2006;175(11-12):713–720. doi: 10.1016/j.cpc.2006.07.020
  • Lyakhov AO, Oganov AR, Stokes HT, et al. New developments in evolutionary structure prediction algorithm USPEX. Comp Phys Comm. 2013;184(4):1172–1182. doi: 10.1016/j.cpc.2012.12.009
  • Lyakhov AO, Oganov AR, Valle M. How to predict very large and complex crystal structures. Comp Phys Comm. 2010;181(9):1623–1632. doi: 10.1016/j.cpc.2010.06.007
  • Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys. 2006;124(24):244704. doi: 10.1063/1.2210932
  • Oganov AR, Glass CW, Ono S. High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett. 2006;241(1-2):95–103. doi: 10.1016/j.epsl.2005.10.014
  • Pickard CJ, Needs R. High-pressure phases of silane. Phys Rev Lett. 2006;97(4):045504. doi: 10.1103/PhysRevLett.97.045504
  • Pickard CJ, Needs R. Ab initio random structure searching. J Phys Condens Matter. 2011;23(5):053201. doi: 10.1088/0953-8984/23/5/053201
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188. doi: 10.1103/PhysRevB.13.5188
  • Methfessel M, Paxton A. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B. 1989;40(6):3616. doi: 10.1103/PhysRevB.40.3616
  • Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021
  • Sagatov N, Gavryushkin PN, Inerbaev TM, et al. New high-pressure phases of Fe7N3 and Fe7C3 stable at Earth's core conditions: evidences for carbon–nitrogen isomorphism in Fe-compounds. RSC Adv. 2019;9(7):3577–3581. doi: 10.1039/C8RA09942A
  • Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44(6):1272–1276. doi: 10.1107/S0021889811038970
  • Stokes HT, Hatch DM. FINDSYM: program for identifying the space-group symmetry of a crystal. J Appl Crystallogr. 2005;38(1):237–238. doi: 10.1107/S0021889804031528

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.