Publication Cover
High Pressure Research
An International Journal
Volume 40, 2020 - Issue 2
187
Views
3
CrossRef citations to date
0
Altmetric
Articles

Ab initio investigation of pressure-induced structural transitions and electronic evolution of Th3N4

, ORCID Icon, , , , & show all
Pages 267-282 | Received 27 Feb 2020, Accepted 23 Apr 2020, Published online: 13 May 2020

References

  • Andersen MB, Elliott T, Freymuth H, et al. The terrestrial uranium isotope cycle. Nature. 2015;517(7534):356. doi: 10.1038/nature14062
  • Bagla P. Thorium seen as Nuclear's new frontier. 2015.
  • Gale A, Dalton CA, Langmuir CH, et al. The mean composition of ocean ridge basalts. Geochem Geophys Geosyst. 2013;14(3):489–518. doi: 10.1029/2012GC004334
  • Grimes RW, Nuttall WJ. Generating the option of a two-stage nuclear renaissance. Science. 2010;329(5993):799–803. doi: 10.1126/science.1188928
  • Rhodes CJ. Current commentary: thorium-based nuclear power. Sci Prog. 2013;96(2):200–209. doi: 10.3184/003685013X13692248406405
  • Obodo KO, Chetty N. A theoretical study of thorium titanium-based alloys. J Nucl Mater. 2013;440(1–3):229–235. doi: 10.1016/j.jnucmat.2013.05.011
  • Gerward L, Staun Olsen J, Benedict U, et al. The crystal structure and the equation of state of thorium nitride for pressures up to 47 GPa. J Appl Crystallogr. 1985;18(5):339–341. doi: 10.1107/S0021889885010421
  • Modak P, Verma AK. First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa. Phys Rev B. 2011;84(2):024108. doi: 10.1103/PhysRevB.84.024108
  • Sahoo B, Joshi K, Kaushik T. High pressure structural stability of ThN: ab-initio study. J Nucl Mater. 2019;521:161–166. doi: 10.1016/j.jnucmat.2019.04.038
  • Uno M, Katsura M, Miyake M. Preparation of Th3N4 and its oxidation behaviour. J Less Common Metals. 1987;135(1):25–38. doi: 10.1016/0022-5088(87)90335-3
  • Kamegashira N, Tsuji T, Miyamoto T, et al. Electrical conductivity and defect structure of nonstoichiometric Th3N4 and Th2N2O. J Nucl Mater. 1981;102(1–2):26–29. doi: 10.1016/0022-3115(81)90542-0
  • Gouder T, Havela L, Black L, et al. Synthesis and electronic properties of Th–N films. J Alloys Compd. 2002;336(1–2):73–76. doi: 10.1016/S0925-8388(01)01896-5
  • Aronson S, Auskern A. Vapor pressure measurements on thorium nitrides. J Phys Chem. 1966;70(12):3937–3941. doi: 10.1021/j100884a033
  • Benz R, Zachariasen W. Th3N4 crystal structure and comparison with that of Th2N2O. Acta Crystallogr. 1966;21(5):838–840. doi: 10.1107/S0365110X66004018
  • Benz R, Hoffman C, Rupert G. Some phase equilibria in the thorium-nitrogen system. J Am Chem Soc. 1967;89(2):191–197. doi: 10.1021/ja00978a001
  • Ozaki S, Kanno M, Mukaibo T. Oxidation of thorium nitrides. J Nucl Sci Technol. 1971;8(1):41–44. doi: 10.1080/18811248.1971.9734770
  • Obodo K, Chetty N. Ab initio studies of Th3N4, Th2N3 and Th2N2(NH). Solid State Commun. 2014;193:41–44. doi: 10.1016/j.ssc.2014.05.022
  • Bowman A, Arnold G. The crystal structure of Th3N4. Acta Crystallogr Sect B. 1971;27(1):243–244. doi: 10.1107/S0567740871001973
  • Wang Y, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B. 2010;82(9):094116.
  • Wang Y, Lv J, Zhu L, et al. Calypso: a method for crystal structure prediction. Comput Phys Commun. 2012;183(10):2063–2070. doi: 10.1016/j.cpc.2012.05.008
  • Maddox J. Crystals from first principles. Nature. 1988;335(6187):201. doi: 10.1038/335201a0
  • Lonie DC, Zurek E. Xtalopt version R7: an open-source evolutionary algorithm for crystal structure prediction. Comput Phys Commun. 2011;182(10):2305–2306. doi: 10.1016/j.cpc.2011.06.003
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. doi: 10.1103/PhysRevB.54.11169
  • Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. doi: 10.1103/PhysRevLett.77.3865
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133. doi: 10.1103/PhysRev.140.A1133
  • Koscielski LA, Ringe E, Van Duyne RP, et al. Single-crystal structures, optical absorptions, and electronic distributions of thorium oxychalcogenides ThOQ (Q = S, Se, Te). Inorg Chem. 2012;51(15):8112–8118. doi: 10.1021/ic300510x
  • Shein I, Shein K, Ivanovskii A. First-principle study of B1-like thorium carbide, nitride and oxide. J Nucl Mater. 2006;353(1–2):19–26. doi: 10.1016/j.jnucmat.2006.02.075
  • Daroca DP, Jaroszewicz S, Llois AM, et al. Phonon spectrum, mechanical and thermophysical properties of thorium carbide. J Nucl Mater. 2013;437(1–3):135–138. doi: 10.1016/j.jnucmat.2013.01.350
  • Guo Y, Qiu W, Ke X, et al. A new phase of ThC at high pressure predicted from a first-principles study. Phys Lett A. 2015;379(26–27):1607–1611. doi: 10.1016/j.physleta.2015.03.037
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188. doi: 10.1103/PhysRevB.13.5188
  • Birch F. Equation of state and thermodynamic parameters of NaCl to 300 kbar in the high-temperature domain. J Geophys Res. 1986;91(B5):4949–4954. doi: 10.1029/JB091iB05p04949
  • Parlinski K, Li Z, Kawazoe Y. First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett. 1997;78(21):4063. doi: 10.1103/PhysRevLett.78.4063
  • Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 2008;78(13):134106. doi: 10.1103/PhysRevB.78.134106
  • Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys. 2009;21(39):395502.
  • Cochran W. Crystal stability and the theory of ferroelectricity. Phys Rev Lett. 1959;3(9):412. doi: 10.1103/PhysRevLett.3.412
  • Le Page Y, Saxe P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B. 2002;65(10):104104. doi: 10.1103/PhysRevB.65.104104
  • Born M, Huang K. Dynamical theory of crystal lattices. Oxford: Clarendon Press; 1954.
  • Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90(22):224104. doi: 10.1103/PhysRevB.90.224104
  • Wu Z-j, Zhao E-j, Xiang H-p, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B. 2007;76(5):054115.
  • Kristin P. Materials data on Th3N4 (SG:166) by materials project, United States: N. p., 2014. DOI:10.17188/1208328
  • Voigt W. Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). New York: Springer-Verlag; 2014.
  • Reuss A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J Appl Math Mech/Z Angew Math Mech. 1929;9(1):49–58. doi: 10.1002/zamm.19290090104
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A. 1952;65(5):349. doi: 10.1088/0370-1298/65/5/307
  • Pugh S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Mag J Sci. 1954;45(367):823–843. doi: 10.1080/14786440808520496
  • Giustino F, Louie SG, Cohen ML. Electron–phonon renormalization of the direct band gap of diamond. Phys Rev Lett. 2010;105(26):265501. doi: 10.1103/PhysRevLett.105.265501
  • Mishra H, Bhattacharya S. Giant exciton–phonon coupling and zero-point renormalization in hexagonal monolayer boron nitride. Phys Rev B. 2019;99(16):165201. doi: 10.1103/PhysRevB.99.165201
  • Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34(1):149–154. doi: 10.1016/0031-8914(67)90062-6
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys. 2003;118(18):8207–8215. doi: 10.1063/1.1564060
  • Shi S, Gao J, Liu Y, et al. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B. 2015;25(1):018212.
  • Heyd J, Peralta JE, Scuseria GE, et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys. 2005;123(17):174101. doi: 10.1063/1.2085170
  • Janesko BG, Henderson TM, Scuseria GE. Screened hybrid density functionals for solid-state chemistry and physics. Phys Chem Chem Phys. 2009;11(3):443–454. doi: 10.1039/B812838C
  • Henderson TM, Paier J, Scuseria GE. Accurate treatment of solids with the HSE screened hybrid. Phys Status Solidi (B). 2011;248(4):767–774. doi: 10.1002/pssb.201046303
  • Isaev EI, Simak SI, Abrikosov IA, et al. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study. J Appl Phys. 2007;101(12):123519 12351 123519–1 –123519–18. doi: 10.1063/1.2747230
  • Xue J, Guo Y, Liu C, et al. Structural phase transitions and superconductivity of YC2 from first-principles calculations. Comput Mater Sci. 2019;159:120–126. doi: 10.1016/j.commatsci.2018.11.042
  • Roedhammer P, Reichardt W, Holtzberg F. Soft-mode behavior in the phonon dispersion of YS. Phys Rev Lett. 1978;40(7):465. doi: 10.1103/PhysRevLett.40.465
  • Bardeen J, Cooper LN, Schrieffer JR. Theory of superconductivity. Phys Rev. 1957;108(5):1175. doi: 10.1103/PhysRev.108.1175

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.