Publication Cover
High Pressure Research
An International Journal
Volume 40, 2020 - Issue 4
247
Views
4
CrossRef citations to date
0
Altmetric
Articles

Raman study of 3.65 Å-phase MgSi(OH)6 under high pressure and the bands assignment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 495-510 | Received 24 Aug 2019, Accepted 20 Sep 2020, Published online: 12 Oct 2020

References

  • Mookherjee M, Speziale S, Marquardt H, et al. Equation of state and elasticity of the 3.65 Å phase: implications for the X-discontinuity. Am Mineral. 2015;100(10):2199–2208.
  • Sclar CB, Carrison LC, Schwartz CM. Phase equilibria in the system MgO-SiO2-H2O, 20–130 kbar, 350–1300 °C. Am Ceram Soc Bull. 1965;44(8):634.
  • Ringwood A, Major A. High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O. Earth Planet Sci Lett. 1967;2(2):130–133.
  • Liu L-G. Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter. 1987;49(1–2):142–167.
  • Kanzaki M. Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter. 1991;66(3–4):307–312.
  • Ohtani E, Shibata T, Kubo T, et al. Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys Res Lett. 1995;22(19):2553–2556.
  • Kudoh Y, Nagase T, Mizohata H, et al. Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050 °C. Geophys Res Lett. 1997;24(9):1051–1054.
  • Ohtani E, Mizobata H, Kudoh Y, et al. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett. 1997;24(9):1047–1050.
  • Frost DJ, Fei Y. Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth. 1998;103(B4):7463–7474.
  • Pacalo RE, Parise JB. Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 °C and 20 GPa. Am Mineral. 1992;77(5–6):681–684.
  • Sclar C, Morzenti S. High pressure synthesis and geophysical significance of a new hydrous phase in the system MgO-SiO2-H2O. Geological Society of America Abstract Programs. 1971;3;698.
  • Pawley AR, Chinnery NJ, Clark SM, et al. Experimental study of the dehydration of 10-Å phase, with implications for its H2O content and stability in subducted lithosphere. Contrib Mineral Petrol. 2011;162(6):1279–1289.
  • Wunder B, Wirth R, Koch-Müller M. The 3.65 Å phase in the system MgO-SiO2-H2O: synthesis, composition, and structure. Am Mineral. 2011;96(8–9):1207–1214.
  • Wunder B, Jahn S, Koch-Müller M, et al. The 3.65 Å phase, MgSi(OH)6: structural insights from DFT-calculations and T-dependent IR spectroscopy. Am Mineral. 2012;97(7):1043–1048.
  • Finger LW, Hazen RM. Crystal chemistry of six-coordinated silicon: A key to understanding the Earth’s deep interior. Acta Crystallogr B Struct Sci. 1991;47(5):561–580.
  • Kleppe A, Welch M, Crichton W, et al. Phase transitions in hydroxide perovskites: a Raman spectroscopic study of stottite, FeGe(OH)6, to 21 GPa. Mineral Mag. 2012;76(4):949–962.
  • Edge R, Taylor H. Crystal structure of thaumasite, a mineral containing [Si(OH)6]2− groups. Nature. 1969;224(5217):363.
  • Zhao J, Ross N, Angel R. New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallogr B Struct Sci. 2004;60(3):263–271.
  • Ohira I, Ohtani E, Sakai T, et al. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett. 2014;401:12–17.
  • Arefiev AV, Shatskiy A, Podborodnikov IV, et al. Melting and subsolidus phase relations in the system K2CO3–MgCO3 at 3 GPa. High Press Res. 2018;38(4):422–439.
  • Gražulis S, Chateigner D, Downs RT, et al. Crystallography Open database – an open-access collection of crystal structures. J Appl Crystallogr. 2009;42(4):726–729.
  • Goryainov S. Raman study of thaumasite Ca3Si(OH)6(SO4)(CO3)⋅12H2O at high pressure. J Raman Spectrosc. 2016;47(8):984–992.
  • Goryainov SV, Krylov AS, Pan Y, et al. Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. J Raman Spectrosc. 2012;43(3):439–447.
  • Brandenburg K, Putz H. Diamond-crystal and molecular structure visualization crystal impact. Rathausgasse. 1999;30:1997–2000.
  • Libowitzky E. Correlation of OH stretching frequencies and OH … O hydrogen bond lengths in minerals. Monatshefte für Chemie/Chemical Monthly. 1999;130(8):1047–1059.
  • Novak A. Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct Bond. 1974;18:177–215.
  • Goryainov S. A model of phase transitions in double-well Morse potential: Application to hydrogen bond. Phys B. 2012;407(21):4233–4237.
  • Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater. 2005;220(5–6):567–570.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.
  • Lutz H. Hydroxide ions in condensed materials—correlation of spectroscopic and structural data. In: Structure and bonding. Berlin: Springer-Verlag; 1995. Vol. 82. p. 85–103.
  • Li R, Jiang Z, Chen F, et al. Hydrogen bonded structure of water and aqueous solutions of sodium halides: a Raman spectroscopic study. J Mol Struct. 2004;707(1–3):83–88.
  • O'shea D, Bartlett M, Young R. Compositional analysis of apatites with laser-Raman spectroscopy:(OH, F, Cl) apatites. Arch Oral Biol. 1974;19(11):995–1006.
  • Liu Z, El Abedin SZ, Endres F. Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions. ChemPhysChem. 2015;16(5):970–977.
  • Fumagalli P, Stixrude L, Poli S, et al. The 10 Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett. 2001;186(2):125–141.
  • Comodi P, Cera F, Dubrovinsky L, et al. The high-pressure behaviour of the 10 Å phase: a spectroscopic and diffractometric study up to 42 GPa. Earth Planet Sci Lett. 2006;246(3–4):444–457.
  • Cynn H, Hofmeister AM. High-pressure IR spectra of lattice modes and OH vibrations in Fe-bearing wadsleyite. J Geophys Res Solid Earth. 1994;99(B9):17717–17727.
  • Cynn H, Hofmeister A, Burnley P, et al. Thermodynamic properties and hydrogen speciation from vibrational spectra of dense hydrous magnesium silicates. Phys Chem Miner. 1996;23(6):361–376.
  • Kleppe AK, Jephcoat AP, Ross NL. Raman spectroscopic studies of phase E to 19 GPa. Am Mineral. 2001;86(10):1275–1281.
  • Hofmeister A, Cynn H, Burnley P, et al. Vibrational spectra of dense, hydrous magnesium silicates at high pressure: importance of the hydrogen bond angle. Am Mineral. 1999;84(3):454–464.
  • Komatsu K, Kagi H, Okada T, et al. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am Mineral. 2005;90(1):266–270.
  • Chio CH, Sharma SK, Muenow DW. Micro-Raman studies of gypsum in the temperature range between 9 and 373 K. Am Mineral. 2004;89(2–3):390–395.
  • Williams Q, Jeanloz R, McMillan P. Vibrational spectrum of MgSiO3 perovskite: zero-pressure Raman and mid-infrared spectra to 27 GPa. J Geophys Res Solid Earth. 1987;92(B8):8116–8128.
  • Wehinger B, Bosak A, Nazzareni S, et al. Dynamical and elastic properties of MgSiO3 perovskite (bridgmanite). Geophys Res Lett. 2016;43(6):2568–2575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.