Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 1
255
Views
1
CrossRef citations to date
0
Altmetric
Articles

Improvement of nano-polycrystalline diamond anvil cells with Zr-based bulk metallic glass cylinder for higher pressures: application to Laue-TOF diffractometer

ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 121-135 | Received 25 Jan 2022, Accepted 21 Feb 2022, Published online: 11 Mar 2022

References

  • Piermarini GJ, Block S, Barnett JD, et al. Calibration of the pressure dependence of the R 1 ruby fluorescence line to 195 kbar. J Appl Phys. 1975;46:2774–2780.
  • Klotz S, Hamel G, Frelat J. A new type of compact large-capacity press for neutron and X-ray scattering. High Press Res. 2004;24:219–223.
  • Bull CL, Guthrie M, Nelmes RJ, et al. Low-temperature neutron single-crystal diffraction studies of samples grown at high pressure. High Press Res. 2009;29:644–648.
  • Kuhs WF, Ahsbahs H, Londono D, et al. In-situ crystal growth and neutron four-circle diffractometry under high pressure. Phys B Condens Matter. 1989;156–157:684–687.
  • Kuhs WF, Bauer FC, Hausmann R, et al. Single crystal diffraction with X-rays and neutrons: High quality at high pressure? High Press Res. 1996;14:341–352.
  • Osakabe T, Kuwahara K, Kawana D, et al. Pressure-induced antiferromagnetic order in filled skutterudite PrFe 4P12 studied by single-crystal high-pressure neutron diffraction. J Phys Soc Japan. 2010;79:4–10.
  • Yamauchi H, Osakabe T, Matsuoka E, et al. Pressure effects on quadrupolar and magnetic ordering in HoB 2C 2 observed by single-crystal neutron diffraction. J Phys Soc Japan. 2012;81:1–7.
  • Xu J, Mao H. Moissanite: A Window for High-Pressure Experiments. Science (80-). 2000;290:783–785.
  • Xu J, Mao H, Hemley RJ, et al. The moissanite anvil cell: a new tool for high-pressure research. J Phys Condens Matter. 2002;14:11543–11548.
  • McIntyre GJ, Mélési L, Guthrie M, et al. One picture says it all—high-pressure cells for neutron Laue diffraction on VIVALDI. J Phys Condens Matter. 2005;17:S3017–S3024.
  • Boehler R, Molaison JJ, Haberl B. Novel diamond cells for neutron diffraction using multi-carat CVD anvils. Rev Sci Instrum. 2017;88:083905.
  • Haberl B, Dissanayake S, Wu Y, et al. Next-generation diamond cell and applications to single-crystal neutron diffraction. Rev Sci Instrum. 2018;89:092902.
  • Massani B, Loveday JS, Molaison JJ, et al. On single-crystal neutron-diffraction in DACs: quantitative structure refinement of light elements on SNAP and TOPAZ. High Press Res. 2020;40:339–357.
  • Grzechnik A, Meven M, Friese K. Single-crystal neutron diffraction in diamond anvil cells with hot neutrons. J Appl Crystallogr. 2018;51:351–356.
  • Grzechnik A, Meven M, Paulmann C, et al. Combined X-ray and neutron single-crystal diffraction in diamond anvil cells. J Appl Crystallogr. 2020;53:9–14.
  • Binns J, Kamenev K V, McIntyre GJ, et al. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction. IUCrJ. 2016;3:168–179.
  • Novelli G, Kamenev K V, Maynard-Casely HE, et al. Use of a miniature diamond-anvil cell in a joint X-ray and neutron high-pressure study on copper sulfate pentahydrate. IUCrJ. 2022;9:1–13.
  • Yamashita K, Komatsu K, Klotz S, et al. A nano-polycrystalline diamond anvil cell with bulk metallic glass cylinder for single-crystal neutron diffraction. High Press Res. 2020;40:88–95.
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421:599–600.
  • Yokoyama Y, Tokunaga H, Yavari AR, et al. Tough Hypoeutectic Zr-Based Bulk Metallic Glasses. Metall Mater Trans A. 2011;42:1468–1475.
  • Ohhara T, Kiyanagi R, Oikawa K, et al. SENJU: A new time-of-flight single-crystal neutron diffractometer at J-PARC. J Appl Crystallogr. 2016;49:120–127.
  • Yokoyama Y, Inoue K, Fukaura K. Pseudo Float Melting State in Ladle Arc-Melt-Type Furnace for Preparing Crystalline Inclusion-Free Bulk Amorphous Alloy. Mater Trans. 2005;43:2316–2319.
  • SM WIEDERHORN. Influence of Water Vapor on Crack Propagation in Soda-Lime Glass. J Am Ceram Soc. 1967;50:407–414.
  • Sears VF. Neutron scattering lengths and cross sections. Neutron News. 1992;3:26–37.
  • Loveday JS, McMahon MI, Nelmes RJ. The effect of diffraction by the diamonds of a diamond-anvil cell on single-crystal sample intensities. J Appl Crystallogr. 1990;23:392–396.
  • Guthrie M, Pruteanu CG, Donnelly ME, et al. Radiation attenuation by single-crystal diamond windows. J Appl Crystallogr. 2017;50:76–86.
  • Sidhu SS, Heaton L, Zauberis DD, et al. Neutron diffraction study of titanium-zirconium system. J Appl Phys. 1956;27:1040–1042.
  • Klotz S. Techniques in High Pressure Neutron Scattering. CRC Press, Taylor & Francis Group; 2012.
  • Komatsu K. Application of Bulk Metallic Glass to Piston Cylinder. Rev HIGH Press Sci Technol. 2016;26:35–40.
  • Klotz S, Chervin J-C, Munsch P, et al. Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys. 2009;42:075413.
  • Mao H, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986;91:4673.
  • Kawasaki T, Nakamura T, Toh K, et al. Detector system of the SENJU single-crystal time-of-flight neutron diffractometer at J-PARC/MLF. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2014;735:444–451.
  • Stone MB, Niedziela JL, Loguillo MJ, et al. A radial collimator for a time-of-flight neutron spectrometer. Rev Sci Instrum. 2014;85:085101.
  • Wright AF, Berneron M, Heathman SP. Radial collimator system for reducing background noise during neutron diffraction with area detectors. Nucl Instruments Methods. 1981;180:655–658.
  • Hattori T, Sano-Furukawa A, Arima H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2015;780:55–67.
  • Ohhara T, Kusaka K, Hosoya T, et al. Development of data processing software for a new TOF single crystal neutron diffractometer at J-PARC. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2009;600:195–197.
  • Becker PJ, Coppens P. Extinction within the limit of validity of the Darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF 2 and LiF. Acta Crystallogr Sect A. 1974;30:148–153.
  • Bartlett G, Langmuir I. THE CRYSTAL STRUCTURES OF THE AMMONIUM HALIDES ABOVE AND BELOW THE TRANSITION TEMPERATURES. J Am Chem Soc. 1921;43:84–91.
  • Kuhs WF, Finney JL, Vettier C, et al. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J Chem Phys. 1984;81:3612–3623.
  • Komatsu K, Kagi H, Yasuzuka T, et al. A design of backing seat and gasket assembly in diamond anvil cell for accurate single crystal x-ray diffraction to 5 GPa. Rev Sci Instrum. 2011;82:105107.
  • Kamb B. Structure of Ice VI. Science (80-). 1965;150:205–209.
  • Yamane R, Komatsu K, Gouchi J, et al. Experimental evidence for the existence of a second partially-ordered phase of ice VI. Nat Commun. 2021;12:1129.
  • Gasser TM, Thoeny A V, Fortes AD, et al. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat Commun. 2021;12:1128.
  • Fortes AD, Knight KS, Wood IG. Structure, thermal expansion and incompressibility of MgSO4·9H2O, its relationship to meridianiite (MgSO4·11H2O) and possible natural occurrences. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. 2017;73:47–64.
  • Wang W, Fortes AD, Dobson DP, et al. Investigation of high-pressure planetary ices by cryo-recovery. II. High-pressure apparatus, examples and a new high-pressure phase of MgSO 4 ·5H 2 O. J Appl Crystallogr. 2018;51:692–705.
  • Yamashita K, Komatsu K, Hattori T, et al. Crystal structure of a high-pressure phase of magnesium chloride hexahydrate determined by in-situ X-ray and neutron diffraction methods. Acta Crystallogr Sect C Struct Chem. 2019;75:1605–1612.
  • Fabbiani FPA, Allan DR, Dawson A, et al. Pressure-induced formation of a solvate of paracetamol. Chem Commun. 2003: 3004.
  • Fabbiani FPA, Allan DR, David WIF, et al. High-pressure recrystallisation—a route to new polymorphs and solvates. CrystEngComm. 2004;6:504–511.
  • Ridley CJ, Jacobsen MK, Kamenev KV. A finite-element study of sapphire anvils for increased sample volumes. High Press Res. 2015;35:148–161.
  • Okuchi T, Yoshida M, Ohno Y, et al. Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell. High Press Res. 2013;33:777–786.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.