Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 2
263
Views
0
CrossRef citations to date
0
Altmetric
Articles

High pressure neutron diffraction on WAND2 with a Paris-Edinburgh press

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 213-225 | Received 30 Dec 2021, Accepted 01 Apr 2022, Published online: 19 Apr 2022

References

  • Besson JM, Nelmes RJ, Hamel G, et al. Neutron powder diffraction above 10 GPa. Phys B Condens Matter. 1992;180–181:907–910.
  • Loveday JS, Nelmes RJ, Marshall WG, et al. High pressure neutron diffraction studies using the Paris-Edinburgh cell. High Press Res. 1996;14(4-6):303–309.
  • Hansen TC, Henry PF, Fischer HE, et al. The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer. Meas Sci Technol. 2008;19(3):034001.
  • Bull CL, Funnell NP, Tucker MG, et al. PEARL: the high pressure neutron powder diffractometer at ISIS. High Press Res. 2016;36(4):493–511.
  • Calder S, An K, Boehler R, et al. A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory. Rev Sci Instrum. 2018;89(9):092701.
  • Wang CH, Kayser P, Kennedy BJ, et al. Squeezing electrons out of 6s2 lone-pairs in perovskite-type oxides. Chem Commun. 2019;55:3887–3890.
  • Hattori T, Sano-Furukawa A, Machida S, et al. Development of a technique for high pressure neutron diffraction at 40 GPa with a Paris-Edinburgh press. High Press Res. 2019;39(3):417–425.
  • Klotz STechniques in high pressure neutron scattering. 1st ed.. Boca Raton: CRC Press; 2013.
  • Klotz S, Besson JM, Braden M, et al. Transverse acoustic phonons of Germanium up to 9.7 GPa by neutron inelastic scattering. Phys Status Solidi B. 1996;198(1):105–113.
  • Klotz S, Besson JM, Braden M, et al. Pressure induced frequency shifts of transverse acoustic phonons in Germanium to 9.7 GPa. Phys Rev Lett. 1997;79:1313–1316.
  • Klotz S, Hamel G, Frelat J. A new type of compact large-capacity press for neutron and x-ray scattering. High Press Res. 2004;24(1):219–223.
  • Novak E, Haberl B, Daemen L, et al. Pressure-induced phase transition in barium hydride studied with neutron scattering. Appl Phys Lett. 2020;117(5):051902.
  • Yu T, Prescher C, Ryu YJ, et al. A Paris-Edinburgh cell for high-Pressure and high-temperature structure studies on silicate liquids using monochromatic synchrotron radiation. Minerals. 2019 Nov;9(11):715.
  • Li X, Wang T, Duan P, et al. Carbon nitride nanothread crystals derived from pyridine. J Am Chem Soc. 2018;140(15):4969–4972.
  • Bove LE, Klotz S, Strässle T, et al. Translational and rotational diffusion in water in the gigapascal range. Phys Rev Lett. 2013;111:185901.
  • Klotz S, Strässle T, Bove LE. Quasi-elastic neutron scattering in the multi-GPa range and its application to liquid water. Appl Phys Lett. 2013;103(19):193504.
  • Klotz S, Hansen TC, Lelièvre-Berna E, et al. Advances in the use of Paris-Edinburgh presses for high pressure neutron scattering. J Neutron Res. 2019;21(3–4):117–124.
  • Guthrie M, Boehler R, Molaison JJ, et al. Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization. Phys Rev B. 2019;99:184112.
  • Komatsu K, Klotz S, Nakano S, et al. Developments of nano-polycrystalline diamond anvil cells for neutron diffraction experiments. High Press Res. 2020;40(1):184–193.
  • Heller WT, Cuneo M, Debeer-Schmitt L, et al. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory. J Appl Crystallogr. 2018;51(2):242–248.
  • Zhang R, Liu S. Investigating hierarchical gas confinement in high-Rank coal through small-angle neutron scattering. Energy Fuels. 2021;35(16):13109–13123.
  • Song Y, Carr SV, Lu X, et al. Uniaxial pressure effect on structural and magnetic phase transitions in NaFeAs and its comparison with as-grown and annealed BaFe2As2. Phys Rev B. 2013;87:184511.
  • Tam DW, Song Y, Man H, et al. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2−xTxAs2 (T=Co,Ni). Phys Rev B. 2017;95:060505.
  • Dissanayake S, Duan C, Yang J, et al. Electronic band tuning under pressure in MoTe2 topological semimetal. npj Quantum Mater. 2019;4:1–7.
  • Wang J, Ye F, Chi S, et al. Pressure effects on magnetic ground states in cobalt-doped multiferroic Mn1−xCoxWO4. Phys Rev B. 2016;93:155164.
  • Dissanayake SE, Matsuda M, Munakata K, et al. Development of cubic anvil type high pressure apparatus for neutron diffraction. J Phys Condens Matter. 2019;31(38):384001.
  • Haberl B, Dissanayake S, Wu Y, et al. Next-generation diamond cell and applications to single-crystal neutron diffraction. Rev Sci Instrum. 2018;89(9):092902.
  • Cao H, Chakoumakos BC, Andrews KM, et al. DEMAND, a dimensional extreme magnetic neutron diffractometer at the high flux isotope reactor. Crystals. 2019;9(1):5.
  • Brant Carvalho PHB, Moraes PIR, Leitão AA, et al. Structural investigation of three distinct amorphous forms of Ar hydrate. RSC Adv. 2021;11:30744–30754.
  • Lawler KV, Smith D, Evans SR, et al. Decoupling lattice and magnetic instabilities in frustrated CuMnO2. Inorg Chem. 2021;60(8):6004–6015.
  • Sano-Furukawa A, Hattori T, Komatsu K, et al. Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction. Sci Rep. 2018;8(1):1136.
  • Ye F, Wang J, Sheng J, et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Phys Rev B. 2018;97:041112.
  • Cai W, Dunuwille M, He J, et al. Deuterium isotope effects in polymerization of benzene under pressure. J Phys Chem Lett. 2017;8(8):1856–1864.
  • Chapagain K, Brown DE, Kolesnik S, et al. Tunable multiferroic order parameters in Sr1−xBaxMn1−yTiyO3. Phys Rev Materials. 2019;3:084401.
  • Haberl B, Molaison JJ, Neuefeind JC, et al. Modified Bridgman anvils for high pressure synthesis and neutron scattering. High Press Res. 2019;39(3):426–437.
  • Haberl B, Molaison JJ, Frontzek M, et al. 3D-printed B4C collimation for neutron pressure cells. Rev Sci Instrum. 2021;92(9):093903.
  • Osti NC, Haberl B, Jalarvo N, et al. Dynamics of a room temperature ionic liquid under applied pressure. Chem Phys. 2020;530:110628.
  • Guthrie MChapter 11 – High-pressure neutron science. In: Fernandez-Alonso F, Price DL, editors. Neutron scattering – applications in biology, chemistry, and materials science. Academic Press; 2017. p. 674. (Experimental Methods in the Physical Sciences; 49).
  • Horita J, Tulk CA, et al. High-pressure neutron diffraction study on H–D isotope effects in brucite. Phys Chem Miner. 2010;37:741–749.
  • Frontzek MD, Whitfield R, Andrews KM, et al. WAND2—A versatile wide angle neutron powder/single crystal diffractometer. Rev Sci Instrum. 2018;89(9):092801.
  • EPICS. Experimental Physics and Industrial Control System. Available from: https://epics-controls.org/.
  • Arnold O, Bilheux J, Borreguero J, et al. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nucl Instrum Methods Phys Res A. 2014;764:156–166.
  • Roisnel T, Rodríquez-Carvajal JWinPLOTR: a windows tool for powder diffraction pattern analysis. European Powder Diffraction EPDIC 7. Vol. 10, Trans Tech Publications Ltd; 2001. p. 118–123. (Materials Science Forum; 378).
  • Toby BH, Von Dreele RB. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr. 2013;46(2):544–549.
  • Jamieson JC. Crystal structures at high pressures of metallic modifications of silicon and germanium. Science. 1963;139(3556):762–764.
  • Olijnyk H. Raman scattering in metallic Si and Ge up to 50 GPa. Phys Rev Lett. 1992;68:2232–2234.
  • Nelmes RJ, Liu H, Belmonte SA, et al. Imma phase of germanium at ∼80 GPa. Phys Rev B. 1996;53:R2907–R2909.
  • Takemura K, Schwarz U, Syassen K, et al. High-pressure Cmca and hcp phases of germanium. Phys Rev B. 2000;62:R10603–R10606.
  • McMahon MI, Nelmes RJ. High-pressure structures and phase transformations in elemental metals. Chem Soc Rev. 2006;35:943–963.
  • Mujica A, Rubio A, Muñoz A, et al. High-pressure phases of group-iv, iii–v, and ii–vi compounds. Rev Mod Phys. 2003;75:863–912.
  • Kelsall LC, Peña-Alvarez M, Martinez-Canales M, et al. High-temperature phase transitions in dense germanium. J Chem Phys. 2021;154(17):174702.
  • Nelmes RJ, McMahon MI, Wright NG, et al. Stability and crystal structure of BC8 germanium. Phys Rev B. 1993;48:9883–9886.
  • Brazhkin VV, Lyapin AG, Popova SV, et al. Solid-phase disordering of bulk Ge and Si samples under pressure. JETP Lett. 1992;56:152–156.
  • Haberl B, Guthrie M, Malone BD, et al. Controlled formation of metastable germanium polymorphs. Phys Rev B. 2014;89:144111.
  • Zhao Z, Zhang H, Kim DY, et al. Properties of the exotic metastable ST12 germanium allotrope. Nat Commun. 2017;8:1–8.
  • Vörös M, Wippermann S, Somogyi B, et al. Germanium nanoparticles with non-diamond core structures for solar energy conversion. J Mater Chem A. 2014;2:9820–9827.
  • Malone BD, Cohen ML. Electronic structure, equation of state, and lattice dynamics of low-pressure Ge polymorphs. Phys Rev B. 2012;86:054101.
  • Huston LQ, Johnson BC, Haberl B, et al. Thermal stability of simple tetragonal and hexagonal diamond germanium. J Appl Phys. 2017;122(17):175108.
  • Tarkhorani S, Sasani Ghamsari M. Novel route for preparation of ST12-Ge nanoparticles at ambient pressure. Mater Sci Eng B. 2020;261:114665.
  • Menoni CS, Hu JZ, Spain IL. Germanium at high pressures. Phys Rev B. 1986;34:362–368.
  • NIST Neutron scattering lengths and cross sections. Available from: https://www.ncnr.nist.gov/resources/n-lengths/.
  • Guillaume CL, Gregoryanz E, Degtyareva O, et al. Cold melting and solid structures of dense lithium. Nat Phys. 2011;7(3):211–214.
  • Matsuoka T, Shimizu K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature. 2009;458(7235):186–189.
  • Schaeffer AMJ, Talmadge WB, Temple SR, et al. High pressure melting of lithium. Phys Rev Lett. 2012;109:185702.
  • Hanfland M, Syassen K, Christensen NE, et al. New high-pressure phases of lithium. Nature. 2000;408:174–178.
  • Hanfland M, Loa I, Syassen K, et al. Equation of state of lithium to 21 GPa. Solid State Commun. 1999;112(3):123–127.
  • Lazicki A, Fei Y, Hemley RJ. High-pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 2010;150(13):625–627.
  • Frost M, Kim JB, McBride EE, et al. The high-pressure melt curve and phase diagram of lithium. Phys Rev Lett. 2019 Aug;123(6):065701.
  • Dewaele A, Datchi F, Loubeyre P, et al. High pressure–high temperature equations of state of neon and diamond. Phys Rev B. 2008;77:094106.
  • Merlini M, Perchiazzi N, Hanfland M, et al. Phase transition at high pressure in Cu2CO3(OH)2 related to the reduction of the Jahn–Teller effect. Acta Cryst B. 2012;68(3):266–274.
  • Gao J, Yuan X, Chen B, et al. High-pressure phase transformation of carbonate malachite Cu2CO3(OH)2 driven by [CuO6] regularization and [CO3] rotation. Geosci Front. 2021;12(20210237):965–973.
  • Lebernegg S, Tsirlin AA, Janson O, et al. Spin gap in malachite Cu2(OH)2CO3 and its evolution under pressure. Phys Rev B. 2013;88:224406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.