Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 3
1,119
Views
0
CrossRef citations to date
0
Altmetric
Articles

Performances of a VIPA-based spectrometer for Brillouin scattering experiments in the diamond anvil cell under laser heating

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 259-277 | Received 28 Jun 2022, Accepted 02 Aug 2022, Published online: 10 Aug 2022

References

  • Polian A. Brillouin scattering at high pressure: an overview. J Raman Spectrosc. 2003;34:633–637.
  • Zha CS, Mao HK, Hemley RJ. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci USA. 2000;97(25):13494–13499.
  • Goncharov AF, Sinogeikin S, Crowhurst JC, et al. Cubic boron nitride as a primary calibrant for a high temperature pressure scale. High Press Res. 2007;27(4):409–417.
  • Zhuravlev KK, Goncharov AF, Tkachev SN, et al. Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: implication for a primary pressure scale. J Appl Phys. 2013;113(11):Article ID 113503.
  • Polian A, Grimsditch M. Sound velocities and refractive index of densified a-SiO to 25 GPa. Phys Rev B. 1993;47(21):Article ID 13979.
  • Zha CS, Hemley RJ, Mao HK, et al. Acoustic velocities and refractive index of SiO glass to 57. 5 GPa by Brillouin scattering. Phys Rev B. 1994;50(18):Article ID 13105.
  • Polian A, Grimsditch M. New high-pressure phase of HO: ice x. Phys Rev Lett. 1984;52(15):1312–1314.
  • Kimura T, Murakami M. Fluid-like elastic response of superionic NH in Uranus and Neptune. Proc Natl Acad Sci USA. 2021;118(14):Article ID e2021810118.
  • Ahart M, Karandikar A, Gramsch S, et al. High P – T Brillouin scattering study of HO melting to 26 GPa. High Press Res. 2014;34(3):327–336.
  • Giordano VM, Datchi F, Dewaele A. Melting curve and fluid equation of state of carbon dioxide at high pressure and high temperature. J Chem Phys. 2006;125(5):Article ID 054504.
  • Chen B, Gleason AE, Yan JY, et al. Elasticity, strength, and refractive index of argon at high pressures. Phys Rev B. 2010;81:Article ID 144110.
  • Ninet S, Weck G, Dewaele A, et al. Sound velocity and refractive index of pure N fluid and of equimolar N–CO fluid mixture up to 15 GPa. J Chem Phys. 2020;153(11):Article ID 114503.
  • Sandercock JR. Light scattering in solids III. Vol. 51. Berlin: Springer; 1982. Chapter 6, Trends in Brillouin scattering: studies of opaque materials, supported films, and central modes; p. 173–206.
  • Scarcelli G, Yun SH. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics. 2008;2(1):39–43.
  • Scarcelli G, Yun SH. Multistage VIPA etalons for high-extinction parallel Brillouin spectroscopy. Opt Express. 2011;19(11):Article ID 10913.
  • Fiore A, Zhang J, Shao P, et al. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl Phys Lett. 2016;108(20):Article ID 203701.
  • Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc. 2021;16(2):1251–1275.
  • Yan G, Bazir A, Margueritat J, et al. Evaluation of commercial virtually imaged phase array and Fabry–Pérot based Brillouin spectrometers for applications to biology. Biomed Opt Express. 2020;11(12):Article ID 6933.
  • Coker Z, Troyanova-Wood M, Traverso AJ, et al. Assessing performance of modern Brillouin spectrometers. Opt Express. 2018;26(3):Article ID 2400.
  • Benedetti LR, Loubeyre P. Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High Press Res. 2004;24(4):423–445.
  • Scarponi F, Mattana S, Corezzi S, et al. High-performance versatile setup for simultaneous Brillouin–Raman microspectroscopy. Phys Rev X. 2017;7(3):031015.
  • Shirasaki M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt Lett. 1996;21(5):Article ID 366.
  • Xiao S, Weiner AM, Lin C. A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory. IEEE J Quantum Electron. 2004;40(4):420–426.
  • Antonacci G, Lepert G, Paterson C, et al. Elastic suppression in Brillouin imaging by destructive interference. Appl Phys Lett. 2015;107(6):Article ID 061102.
  • Hollricher O. Confocal Raman microscopy. Berlin: Springer; 2011. (Springer Series in Optical Sciences; Vol. 158). Chapter 3, Raman Instrumentation for confocal Raman microscopy; p. 43–60.
  • Abramson EH, Brown JM. Equation of state of water based on speeds of sound measured in the diamond-anvil cell. Geochim Cosmochim Acta. 2004;68(8):1827–1835.
  • Polian A, Grimsditch M. Brillouin scattering from HO: liquid, ice VI, and ice VII. Phys Rev B. 1983;27:6409–6412.
  • Decremps F, Datchi F, Polian A. Hypersonic velocity measurement using Brillouin scattering technique. application to water under high pressure and temperature. Ultrasonics. 2006;44:e1495–e1498.
  • Baer BJ, Brown JM, Zaug JM, et al. Impulsive stimulated scattering in ice VI and ice VII. J Chem Phys. 1998;108(11):4540–4544.
  • Sanchez-Valle C, Mantegazzi D, Bass JD, et al. Equation of state, refractive index and polarizability of compressed water to 7 GPa and 673 K. J Chem Phys. 2013;138(5):Article ID 054505.
  • Li F, Cui Q, He Z, et al. High pressure-temperature Brillouin study of liquid water: evidence of the structural transition from low-density water to high-density water. J Chem Phys. 2005;123(17):Article ID 174511.
  • Meng Z, Yakovlev VV. Optimizing signal collection efficiency of the VIPA-based Brillouin spectrometer. J Innov Opt Health Sci. 2015;08(04):Article ID 1550021.
  • Turnbull R, Hanfland M, Binns J, et al. Unusually complex phase of dense nitrogen at extreme conditions. Nat Commun. 2018;9(1):4717.
  • Tomasino D, Jenei Z, Evans W, et al. Melting and phase transitions of nitrogen under high pressures and temperatures. J Chem Phys. 2014;140(24):Article ID 244510.
  • Gregoryanz E, Goncharov AF, Sanloup C, et al. High P-T transformations of nitrogen to 170 GPa. J Chem Phys. 2007;126(18):Article ID 184505.
  • Gregoryanz E, Goncharov AF, Hemley RJ, et al. Raman, infrared, and x-ray evidence for new phases of nitrogen at high pressures and temperatures. Phys Rev B. 2002;66(22):Article ID 224108.
  • Goncharov AF, Crowhurst JC, Struzhkin VV, et al. Triple point on the melting curve and polymorphism of nitrogen at high pressure. Phys Rev Lett. 2008;101(9):Article ID 095502.
  • Eremets MI, Gavriliuk AG, Trojan IA, et al. Single-bonded cubic form of nitrogen. Nat Mater. 2004;3(8):558–563.
  • Laniel D, Geneste G, Weck G, et al. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys Rev Lett. 2019;122:Article ID 066001.
  • Donadio D, Spanu L, Duchemin I, et al. Ab initio investigation of the melting line of nitrogen at high pressure. Phys Rev B. 2010;82(2). Article ID 020102
  • Yakub LN. Melting line of polymeric nitrogen. Low Temp Phys. 2013;39(5):427–429.
  • Mukherjee GD, Boehler R. High-pressure melting curve of nitrogen and the liquid-liquid phase transition. Phys Rev Lett. 2007;99(22).Article ID 225701
  • Weck G, Datchi F, Garbarino G, et al. Melting curve and liquid structure of nitrogen probed by X-ray diffraction to 120 GPa. Phys Rev Lett. 2017;119(23).Article ID 235701
  • Shen G, Wang Y, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press Res. 2020;40(3):299–314.
  • Weck G, Queyroux JA, Ninet S, et al. Evidence and stability field of fcc superionic water ice using static compression. Phys Rev Lett. 2022;128(16):Article ID 165701.
  • Grimsditch M, Loubeyre P, Polian A. Brillouin scattering and three-body forces in argon at high pressures. Phys Rev B. 1986;33:7192–7200.
  • Gregoryanz E, Goncharov AF. Comment on ‘High-pressure melting curve of nitrogen and the liquid-liquid phase transition’. Phys Rev Lett. 2009;102(4):Article ID 049601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.